作者: Maike Buchin , Helmut Alt
DOI:
关键词: Combinatorics 、 Monotone polygon 、 Turing machine 、 Fréchet distance 、 Decision problem 、 Computability 、 Measure (mathematics) 、 Sequence 、 Recursively enumerable language 、 Mathematics
摘要: The Frechet distance is a measure for pa- rameterized curves or surfaces. Using discrete ap- proximation, we show that triangulated surfaces it upper semi-computable, i.e., there non-halting Turing machine which produces monotone decreas- ing sequence of rationals converging to the result. It follows decision problem, whether two given lies below some speci- fied value, recursively enumerable.