Temperature dependence of the ideal fracture strength of a b.c.c. crystal

作者: K. Nishioka , J. K. Lee

DOI: 10.1080/01418618108239548

关键词: Ultimate tensile strengthThermodynamicsFlexural strengthThermal expansionCrystallographyHelmholtz free energyModulusFracture (geology)Materials scienceGaussianCrystalCondensed matter physicsMetals and AlloysPhysics and Astronomy (miscellaneous)General Materials ScienceElectronic, Optical and Magnetic Materials

摘要: Abstract The temperature dependence of ideal strength is studied for a b.c.c. crystal in [001] and loadings. Born's criterion, with Milstein's variables, employed to determine the strength. Helmholtz free energy calculated under self-consistent Einstein model devised by Matsubara. For mathematical convenience, Gaussian type pair-wise central potential represent atomic interactions. We attempt fit both elastic constants at 0 K thermal expansion α-Fe, but cannot be fitted simultaneously. Three different potentials are used calculation results compared. value closely related predicted C 11 – 12 or Young's modulus. With which approximately experimental modulus K, fracture strain found fair agreement α-Fe whiskers. Tensile [011] loading about five ti...

参考文章(27)
A.S. Tetelman, A.J. McEvily, Fracture of Structural Materials ,(1967)
John Freserick Nye, Physical properties of crystals ,(1985)
M. Born, R. Fürth, The stability of crystal lattices. III Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 36, pp. 454- 465 ,(1940) , 10.1017/S0305004100017503
Frederick Milstein, Mechanical Stability of Crystal Lattices with Two-Body Interactions Physical Review B. ,vol. 2, pp. 512- 518 ,(1970) , 10.1103/PHYSREVB.2.512
T. Matsubara, Y. Iwase, A. Momokita, Theory of Anharmonic Lattice Vibration in Metallic Fine Particles. I Progress of Theoretical Physics. ,vol. 58, pp. 1102- 1113 ,(1977) , 10.1143/PTP.58.1102
E. Matsushita, T. Matsubara, Theory of Anharmonic Lattice Vibration in Metallic Fine Particles. II Application to Mössbauer Spectroscopy Progress of Theoretical Physics. ,vol. 59, pp. 15- 22 ,(1978) , 10.1143/PTP.59.15
Rodney Hill, Frederick Milstein, Principles of stability analysis of ideal crystals Physical Review B. ,vol. 15, pp. 3087- 3096 ,(1977) , 10.1103/PHYSREVB.15.3087
T. Matsubara, K. Kamiya, Self-Consistent Einstein Model and Theory of Anharmonic Surface Vibration. I One-Dimensional Model Progress of Theoretical Physics. ,vol. 58, pp. 767- 776 ,(1977) , 10.1143/PTP.58.767
L. A. Girifalco, V. G. Weizer, Application of the Morse Potential Function to Cubic Metals Physical Review. ,vol. 114, pp. 687- 690 ,(1959) , 10.1103/PHYSREV.114.687