Equivalence between entropy and renormalized solutions for parabolic equations

作者: Chiraz Kouraichi , Abdelmajid Siai

DOI: 10.1016/J.INDAG.2015.06.001

关键词: Parabolic partial differential equationMathematicsDirectional derivativeMathematical analysisLipschitz continuityMathematical physics

摘要: If Ω is an open bounded set in RN, N≥2, with a connected Lipschitz boundary ∂Ω, a(x,ξ) operator of Leray–Lions type, β and γ are non decreasing continuous real functions, β(0)=γ(0)=0, then for every (f,g)∈L1(]0,T[×RN)×L1(]0,T[×∂Ω),(u0,v0)∈L1(RN)×L1(∂Ω), we prove that the entropy solution coincides renormalized to following problem: {u′−div[a(.,∇u)]+β(u)=fon ]0,T[×(RN∖∂Ω),(τu)′+[∂u∂νa]+γ(τu)=g [u]=0on ]0,T[×∂Ω,(u(0,.),τu(0,.))=(u0,v0)a.e. on RN×∂Ω, where [u] [∂u∂νa] respectively jump across ∂Ω u normal derivative ∂u∂νa related a.

参考文章(12)
Jérôme Droniou, Alain Prignet, Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data Nodea-nonlinear Differential Equations and Applications. ,vol. 14, pp. 181- 205 ,(2007) , 10.1007/S00030-007-5018-Z
José Carrillo, Petra Wittbold, Uniqueness of Renormalized Solutions of Degenerate Elliptic–Parabolic Problems Journal of Differential Equations. ,vol. 156, pp. 93- 121 ,(1999) , 10.1006/JDEQ.1998.3597
Felix Otto, L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations Journal of Differential Equations. ,vol. 131, pp. 20- 38 ,(1996) , 10.1006/JDEQ.1996.0155
Hans Wilhelm Alt, Stephan Luckhaus, Quasilinear elliptic-parabolic differential equations Mathematische Zeitschrift. ,vol. 183, pp. 311- 341 ,(1983) , 10.1007/BF01176474
Dominique Blanchard, François Murat, Hicham Redwane, Existence and Uniqueness of a Renormalized Solution for a Fairly General Class of Nonlinear Parabolic Problems Journal of Differential Equations. ,vol. 177, pp. 331- 374 ,(2001) , 10.1006/JDEQ.2000.4013
F. Andreu, N. Igbida, J.M. Mazon, J. Toledo, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions Interfaces and Free Boundaries. ,vol. 8, pp. 447- 479 ,(2006) , 10.4171/IFB/151
F. Andreu, N. Igbida, J.M. Mazón, J. Toledo, Renormalized solutions for degenerate elliptic–parabolic problems with nonlinear dynamical boundary conditions and L1-data Journal of Differential Equations. ,vol. 244, pp. 2764- 2803 ,(2008) , 10.1016/J.JDE.2008.02.022
Abdelmajid Siai, A Fully Nonlinear Nonhomogeneous Neumann Problem Potential Analysis. ,vol. 24, pp. 15- 45 ,(2006) , 10.1007/S11118-005-5564-0