Applications of functional analysis in engineering

作者: J.L. Nowinski

DOI:

关键词: Direct sumMathematicsInner product spaceContraction mappingHilbert spaceVector spaceMathematical analysisSobolev spaceBanach spaceLinear subspace

摘要: 1. Physical Space. Abstract Spaces.- Comment 1.1.- 2. Basic Vector Algebra.- Axioms 2.1-2.3 and Definitions 2.1-2.3.- 2.4-2.8.- Theorem 2.1 (Parallelogram Law).- Problems.- 3. Inner Product of Vectors. Norm.- 3.1 3.2.- Pythagorean Theorem.- Minkowski Inequality.- Cauchy-Schwarz 4. Linear Independence. Components. Space Dimension.- Span. Basis. Components.- 5. Euclidean Spaces Many Dimensions.- 5.1-5.6.- 5.7-5.9.- Orthogonal Projections.- Inequalities.- Gram-Schmidt Orthogonalization Process.- lp-Space.- 6. Infinite-Dimensional Section 6.1. Convergence a Sequence Vectors in ??.- Cauchy Sequence.- 6.2. Span, Basis.- 6.3. Manifold.- Subspace.- Distance.- Remark 6.1.- 7. Spaces. Hilbert Space.- Axioms.- Product.- Pre-Hilbert Dimension. Completeness. Separability.- Metric Ca?t?b l1.- Normed Banach Fourier Coefficients.- Bessel's Inequality. Parseval's Equality.- 7.1. Contraction Mapping.- 8. Function Hilbert, Dirichlet, Products.- Positive Semi-Definite Metric.- Semi-Norm.- Clapeyron Rayleigh-Betti Differential Operators. Functionals.- Variational Principles.- Bending Isotropic Plates.- Torsion Bars.- 8.1. Theory Quantum Mechanics.- 9. Some Geometry Translated Subspaces.- Intrinsic Extrinsic Vectors.- Hyperplanes.- Convexity.- Perpendicularity. Complement. Direct Sum.- n-Spheres Hyperspheres.- Balls.- 10. Closeness Functions. Approximation the Mean. Expansions.- Uniform Convergence. Mean Square.- Energy ?2.- Generalized Series.- Eigenvalue 11. Bounds Lower Upper Bounds.- Neumann Problem. Dirichlet Integral.- Problem.- Hypercircle.- Geometrical Illustrations.- Mean.- Example 11.1. an Anisotropic Bar (Numerical Example).- 11.2. for Deflection Plates Solution at Point.- 11.1.1. The L*L Method Kato-Fujita.- Poisson's 11.1.2. Diaz-Greenberg Method.- 11.3. Circular Plate 11.1.3. Washizu Procedure.- 11.4. 12. Elastic State Vector.- Uniqueness Vertices.- Hypersphere. Hyperplane. 12.1. on State.- Fundamental Auxiliary States.- Cylinder Gravity Field Galerkin 12.2. Green's Function.- 12.3. Hypercircle 12.4. A Comment.- 13. Illustrations. Projection 13.1. Arithmetic Progression 13.2. Heated Approximations. Chebyshev 13.3. 14. Rayleigh-Ritz Trefftz Methods.- 14.1. Coordinate Admissibility.- Sequences Lagrange Castigliano Torsional Rigidity.- 14.2. Biharmonic More General 14.3. Remark.- 14.4. Improvement 15. 15.1. Inverse Symmetry Nondegeneracy Forms.- 15.2. Minimum 15.3. Laws' Approach.- Reciprocal Theorems.- 15.4. Plane Tripod.- Lines Self-Equilibrated Stress Equilibrium Principle.- Maximum 16. Distributions. Sobolev 16.1. Distributions.- Delta Test Functions.- Distribution.- Differentiation An Example.- 16.2. Answers to References.

参考文章(79)
M. E. Gurtin, Variational principles for linear initial-value problems Quarterly of Applied Mathematics. ,vol. 22, pp. 252- 256 ,(1964) , 10.1090/QAM/99951
Dunham Jackson, The theory of approximation ,(1930)
J. A. Walker, Energy-like Liapunov functionals for linear elastic systems on a Hilbert space. Quarterly of Applied Mathematics. ,vol. 30, pp. 465- 480 ,(1973) , 10.1090/QAM/508715
Andrej Nikolaevich Kolmogorov, S Fomin, Elements of the Theory of Functions and Functional Analysis ,(1961)
Joseph Pierre Lasalle, Henry Hermes, functional analysis and time Optimal Control ,(1969)
Ivan Singer, The theory of best approximation and functional analysis Society for Industrial and Applied Mathematics. ,(1974) , 10.1137/1.9781611970548
David G. Luenberger, Optimization by Vector Space Methods ,(1968)