Generalized finite-difference schemes

作者: Blair Swartz , Burton Wendroff

DOI: 10.1090/S0025-5718-1969-0239768-7

关键词: Step functionMatrix (mathematics)Finite differencePartial differential equationNonlinear systemGalerkin methodMathematical analysisFlux limiterSystem of linear equationsMathematics

摘要: Finite-difference schemes for initial boundary-value problems partial differential equations lead to systems of which must be solved at each time step. Other methods also equations. We call a method generalized finite-difference scheme if the matrix coefficients system is sparse. Galerkin's method, using local basis, provides unconditionally stable, implicit large class linear and nonlinear problems. The can generated by computer program. will, in general, not more efficient than standard when such stable exist. exhibit Burgers' equation solve it with step function data. U

参考文章(12)
P. G. Ciarlet, M. H. Schultz, R. S. Varga, Numerical methods of high-order accuracy for nonlinear boundary value problems Numerische Mathematik. ,vol. 13, pp. 120- 133 ,(1968) , 10.1007/BF02162155
Blair Swartz, $O\left({h^{2n+2-l}}\right)$ bounds on some spline interpolation errors Bulletin of the American Mathematical Society. ,vol. 74, pp. 1072- 1078 ,(1968) , 10.1090/S0002-9904-1968-12052-X
Vidar Thomée, Generally Unconditionally Stable Difference Operators SIAM Journal on Numerical Analysis. ,vol. 4, pp. 55- 69 ,(1967) , 10.1137/0704006
George J. Minty, Monotone (nonlinear) operators in Hilbert space Duke Mathematical Journal. ,vol. 29, pp. 341- 346 ,(1962) , 10.1215/S0012-7094-62-02933-2
Gunter Lumer, R. S. Phillips, Dissipative operators in a Banach space Pacific Journal of Mathematics. ,vol. 11, pp. 679- 698 ,(1961) , 10.2140/PJM.1961.11.679
Heinz-Otto Kreiss, Über implizite Differenzmethoden für partielle Differentialgleichungen Numerische Mathematik. ,vol. 5, pp. 24- 47 ,(1963) , 10.1007/BF01385876
Felix E. Browder, Non-Linear Initial Value Problems The Annals of Mathematics. ,vol. 82, pp. 51- ,(1965) , 10.2307/1970562
Felix E. Browder, Non-Linear Equations of Evolution The Annals of Mathematics. ,vol. 80, pp. 485- ,(1964) , 10.2307/1970660