Unsupervised learning for robust Bitcoin fraud detection

作者: Patrick Monamo , Vukosi Marivate , Bheki Twala , None

DOI: 10.1109/ISSA.2016.7802939

关键词: CurrencyCybercrimeData miningCryptographyInformation securityCluster analysisComputer securityAnomaly detectionUnsupervised learningOutlierComputer science

摘要: The rampant absorption of Bitcoin as a cryptographic currency, along with rising cybercrime activities, warrants utilization anomaly detection to identify potential fraud. Anomaly plays pivotal role in data mining since most outlying points contain crucial information for further investigation. In the financial world which network is part by default, amounts fraud detection. This paper investigates use trimmed k-means, that capable simultaneous clustering objects and multivariate setup, detect fraudulent activity transactions. proposed approach detects more transactions than similar studies or reports on same dataset.

参考文章(15)
Chris Fraley, Adrian E. Raftery, MCLUST Version 3: An R Package for Normal Mixture Modeling and Model-Based Clustering Defense Technical Information Center. ,(2006) , 10.21236/ADA456562
Leman Akoglu, Mary McGlohon, Christos Faloutsos, OddBall: spotting anomalies in weighted graphs knowledge discovery and data mining. ,vol. 6119, pp. 410- 421 ,(2010) , 10.1007/978-3-642-13672-6_40
Heinrich Fritz, Luis A. García-Escudero, Agustín Mayo-Iscar, tclust: AnRPackage for a Trimming Approach to Cluster Analysis Journal of Statistical Software. ,vol. 47, pp. 1- 26 ,(2012) , 10.18637/JSS.V047.I12
Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, Edward W. Felten, SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurrencies 2015 IEEE Symposium on Security and Privacy. pp. 104- 121 ,(2015) , 10.1109/SP.2015.14
J. A. Cuesta-Albertos, A. Gordaliza, C. Matrán, Trimmed $k$-means: an attempt to robustify quantizers Annals of Statistics. ,vol. 25, pp. 553- 576 ,(1997) , 10.1214/AOS/1031833664
L. A. García-Escudero, A. Gordaliza, C. Matrán, A. Mayo-Iscar, Exploring the number of groups in robust model-based clustering Statistics and Computing. ,vol. 21, pp. 585- 599 ,(2011) , 10.1007/S11222-010-9194-Z
Siddhartha Bhattacharyya, Sanjeev Jha, Kurian Tharakunnel, J. Christopher Westland, Data mining for credit card fraud: A comparative study decision support systems. ,vol. 50, pp. 602- 613 ,(2011) , 10.1016/J.DSS.2010.08.008
E.W.T. Ngai, Yong Hu, Y.H. Wong, Yijun Chen, Xin Sun, The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature decision support systems. ,vol. 50, pp. 559- 569 ,(2011) , 10.1016/J.DSS.2010.08.006
Leman Akoglu, Hanghang Tong, Danai Koutra, Graph based anomaly detection and description: a survey Data Mining and Knowledge Discovery. ,vol. 29, pp. 626- 688 ,(2015) , 10.1007/S10618-014-0365-Y
Marco A.F. Pimentel, David A. Clifton, Lei Clifton, Lionel Tarassenko, Review: A review of novelty detection Signal Processing. ,vol. 99, pp. 215- 249 ,(2014) , 10.1016/J.SIGPRO.2013.12.026