Learning unions of orthonormal bases with thresholded singular value decomposition

作者: S. Lesage , R. Gribonval , F. Bimbot , L. Benaroya

DOI: 10.1109/ICASSP.2005.1416298

关键词: Algorithm designBasis (linear algebra)K-SVDPattern recognitionArtificial intelligenceMathematicsIterative methodRelaxation (iterative method)Orthonormal basisSparse matrixSingular value decomposition

摘要: We propose a new method to learn overcomplete dictionaries for sparse coding structured as unions of orthonormal bases. The interest such structure is manifold. Indeed, it seems that many signals or images can be modeled the superimposition several layers with decompositions in Moreover, dictionaries, efficient block coordinate relaxation (BCR) algorithm used compute decompositions. show possible design an iterative learning produces dictionary required structure. Each step based on coefficients estimation, using variant BCR, followed by update one chosen basis, singular value decomposition. assess experimentally how well recovers may not have structure, and what extent noise level disturbing factor.

参考文章(10)
T.K. Moon, The expectation-maximization algorithm IEEE Signal Processing Magazine. ,vol. 13, pp. 47- 60 ,(1996) , 10.1109/79.543975
Michael S. Lewicki, Bruno A. Olshausen, Probabilistic framework for the adaptation and comparison of image codes Journal of the Optical Society of America A. ,vol. 16, pp. 1587- 1601 ,(1999) , 10.1364/JOSAA.16.001587
Scott Shaobing Chen, David L. Donoho, Michael A. Saunders, Atomic Decomposition by Basis Pursuit SIAM Review. ,vol. 43, pp. 129- 159 ,(2001) , 10.1137/S003614450037906X
Sylvain Sardy, Andrew G. Bruce, Paul Tseng, Block Coordinate Relaxation Methods for Nonparametric Wavelet Denoising Journal of Computational and Graphical Statistics. ,vol. 9, pp. 361- 379 ,(2000) , 10.1080/10618600.2000.10474885
S. Molla, B. Torresani, Determining local transientness of audio signals IEEE Signal Processing Letters. ,vol. 11, pp. 625- 628 ,(2004) , 10.1109/LSP.2004.830110
Anthony J. Bell, Terrence J. Sejnowski, The "independent components" of natural scenes are edge filters. Vision Research. ,vol. 37, pp. 3327- 3338 ,(1997) , 10.1016/S0042-6989(97)00121-1
Michael S. Lewicki, Terrence J. Sejnowski, Learning Overcomplete Representations Neural Computation. ,vol. 12, pp. 337- 365 ,(2000) , 10.1162/089976600300015826
Kenneth Kreutz-Delgado, Joseph F. Murray, Bhaskar D. Rao, Kjersti Engan, Te-Won Lee, Terrence J. Sejnowski, Dictionary learning algorithms for sparse representation Neural Computation. ,vol. 15, pp. 349- 396 ,(2003) , 10.1162/089976603762552951
S.G. Mallat, Zhifeng Zhang, Matching pursuits with time-frequency dictionaries IEEE Transactions on Signal Processing. ,vol. 41, pp. 3397- 3415 ,(1993) , 10.1109/78.258082
J.-L. Starck, M. Elad, D.L. Donoho, Image decomposition via the combination of sparse representations and a variational approach IEEE Transactions on Image Processing. ,vol. 14, pp. 1570- 1582 ,(2005) , 10.1109/TIP.2005.852206