Spline Representations of Functions on a Sphere for Geopotential Modeling

作者: Christopher Jekeli

DOI:

关键词: Pure mathematicsTechnical reportGeopotentialSpline (mathematics)AlgebraMathematics

摘要: This report was prepared with support from the National Geospatial-Intelligence Agency under contract NMA302-02-C-0002 and serves as final technical for this project.

参考文章(17)
B. D. Tapley, S. Bettadpur, M. Watkins, C. Reigber, The gravity recovery and climate experiment: Mission overview and early results Geophysical Research Letters. ,vol. 31, ,(2004) , 10.1029/2004GL019920
Helmut Moritz, Advanced Physical Geodesy ,(1989)
R. Klees, Topics on boundary element methods Springer Berlin Heidelberg. pp. 482- 531 ,(1997) , 10.1007/BFB0011714
Peter Alfeld, Marian Neamtu, Larry L. Schumaker, Fitting scattered data on sphere-like surfaces using spherical splines Journal of Computational and Applied Mathematics. ,vol. 73, pp. 5- 43 ,(1996) , 10.1016/0377-0427(96)00034-9
Peter Alfeld, Marian Neamtu, Larry L. Schumaker, Dimension and Local Bases of Homogeneous Spline Spaces SIAM Journal on Mathematical Analysis. ,vol. 27, pp. 1482- 1501 ,(1996) , 10.1137/S0036141094276275
R. Rummel, G. Balmino, J. Johannessen, P. Visser, P. Woodworth, Dedicated gravity field missions—principles and aims Journal of Geodynamics. ,vol. 33, pp. 3- 20 ,(2002) , 10.1016/S0264-3707(01)00050-3
Tom Lyche, Larry L. Schumaker, A Multiresolution Tensor Spline Method for Fitting Functions on the Sphere SIAM Journal on Scientific Computing. ,vol. 22, pp. 724- 746 ,(2000) , 10.1137/S1064827598344388
Larry L. Schumaker, Cornelis Traas, Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines Numerische Mathematik. ,vol. 60, pp. 133- 144 ,(1991) , 10.1007/BF01385718