Radiative heating rates and direct radiative forcing by mineral dust in cloudy atmospheric conditions

作者: Ana Lía Quijano , Irina N. Sokolik , O. Brian Toon

DOI: 10.1029/2000JD900047

关键词: Radiative transferAtmosphereRadiative forcingOptical depthAtmospheric radiative transfer codesAlbedoAtmospheric sciencesEnvironmental scienceLongwaveMineral dust

摘要: We explore several issues relevant to assessments of solar and infrared radiative effects due mineral aerosols. One issue is the importance vertical distribution dust for calculations heating rates. Another role that clouds may play in augmenting forcing by dust. also composition aerosols employing spectral optical properties comes from two different regions globe, Saharan Afghan deserts. A combined longwave shortwave transfer model was used determine instantaneous atmosphere, fluxes at surface, rates airborne clear-sky cloudy atmospheric conditions. Extensive with our show increasing loading results both cooling However, net during day are always positive, yielding layer. With similar conditions loading, causes larger than The magnitudes can easily be 25% high Sun angles over bright surfaces. Also, yields more positive values TOA (top atmosphere) dust; a diurnal average, this lead change sign negative just mineralogical composition. Clouds significantly influence direct impact depending on cloud altitude depth. Moreover, strongly dependent position surface albedo.

参考文章(29)
P. Alpert, Y. J. Kaufman, Y. Shay-El, D. Tanre, A. da Silva, S. Schubert, J. H. Joseph, Quantification of dust-forced heating of the lower troposphere Nature. ,vol. 395, pp. 367- 370 ,(1998) , 10.1038/26456
E. M. Patterson, Optical properties of the crustal aerosol: Relation to chemical and physical characteristics Journal of Geophysical Research. ,vol. 86, pp. 3236- 3246 ,(1981) , 10.1029/JC086IC04P03236
Irina Sokolik, Aleksandra Andronova, Tezz C. Johnson, Complex refractive index of atmospheric dust aerosols Atmospheric Environment. Part A. General Topics. ,vol. 27, pp. 2495- 2502 ,(1993) , 10.1016/0960-1686(93)90021-P
Steven A. Ackerman, Remote sensing aerosols using satellite infrared observations Journal of Geophysical Research. ,vol. 102, pp. 17069- 17079 ,(1997) , 10.1029/96JD03066
Guillaume A. d'Almeida, On the variability of desert aerosol radiative characteristics Journal of Geophysical Research. ,vol. 92, pp. 3017- 3026 ,(1987) , 10.1029/JD092ID03P03017
Y. Fouquart, B. Bonnel, G. Brogniez, J. C. Buriez, L. Smith, J. J. Morcrette, A. Cerf, Observations of Saharan Aerosols: Results of ECLATS Field Experiment. Part II: Broadband Radiative Characteristics of the Aerosols and Vertical Radiative Flux Divergence Journal of Applied Meteorology and Climatology. ,vol. 26, pp. 38- 52 ,(1987) , 10.1175/1520-0450(1987)026<0038:OOSARO>2.0.CO;2
Isabelle Chiapello, Gilles Bergametti, Bernadette Chatenet, Francois Dulac, Isabelle Jankowiak, Catherine Liousse, Emmanuel Santos Soares, Contribution of the different aerosol species to the aerosol mass load and optical depth over the northeastern tropical Atlantic Journal of Geophysical Research. ,vol. 104, pp. 4025- 4035 ,(1999) , 10.1029/1998JD200044
Shou-Jun Chen, Ying-Hwa Kuo, Wei Ming, Hong Ying, The Effect of Dust Radiative Heating on Low-Level Frontogenesis Journal of the Atmospheric Sciences. ,vol. 52, pp. 1414- 1420 ,(1995) , 10.1175/1520-0469(1995)052<1414:TEODRH>2.0.CO;2
Irina N. Sokolik, Owen B. Toon, Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths Journal of Geophysical Research. ,vol. 104, pp. 9423- 9444 ,(1999) , 10.1029/1998JD200048
D.M. Winker, R.H. Couch, M.P. McCormick, An overview of LITE: NASA's Lidar In-space Technology Experiment Proceedings of the IEEE. ,vol. 84, pp. 164- 180 ,(1996) , 10.1109/5.482227