A New Pseudo-metric for Fuzzy Sets

作者: Laszlo Kovacs , Joel Ratsaby

DOI: 10.1007/978-3-319-07173-2_19

关键词: MathematicsFuzzy setTriangle inequalityMembership functionFuzzy numberSymmetric differenceDefuzzificationType-2 fuzzy sets and systemsMetric (mathematics)Discrete mathematics

摘要: A new distance function for fuzzy sets is introduced. It based on the descriptive complexity, that is, number of bits (on average) are needed to describe an element in symmetric difference two sets. The value gives amount additional information either one when other known. We prove a pseudo-metric, namely, it non-negative, symmetric, equals zero if identical and satisfies triangle inequality.

参考文章(26)
Tony Martinez, Christophe Giraud-Carrier, An Efficient Metric for Heterogeneous Inductive Learning Applications in the Attribute-Value Language University of Bristol. ,(1995)
Uzi Chester, Joel Ratsaby, Machine Learning for Image Classification and Clustering Using a Universal Distance Measure similarity search and applications. pp. 59- 72 ,(2013) , 10.1007/978-3-642-41062-8_7
r;ribeiro-neto bueza-yates (b), Modern Information Retrieval ,(1999)
Joel Ratsaby, Combinatorial information distance arXiv: Discrete Mathematics. ,(2009)
Richard Connor, Robert Moss, A Multivariate Correlation Distance for Vector Spaces Similarity Search and Applications. pp. 209- 225 ,(2012) , 10.1007/978-3-642-32153-5_15
Elena Deza, Michel Marie Deza, Encyclopedia of Distances ,(2012)
Jiulun Fan, Weixin Xie, Some notes on similarity measure and proximity measure Fuzzy Sets and Systems. ,vol. 101, pp. 403- 412 ,(1999) , 10.1016/S0165-0114(97)00108-5
B.De Baets, H.De Meyer, H. Naessens, A class of rational cardinality-based similarity measures Journal of Computational and Applied Mathematics. ,vol. 132, pp. 51- 69 ,(2001) , 10.1016/S0377-0427(00)00596-3
Uzi A. Chester, Joel Ratsaby, Universal distance measure for images ieee convention of electrical and electronics engineers in israel. pp. 1- 4 ,(2012) , 10.1109/EEEI.2012.6377115
Yizong Cheng, King-Sun Fu, Conceptual Clustering in Knowledge Organization IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-7, pp. 592- 598 ,(1985) , 10.1109/TPAMI.1985.4767706