Effect of heat stress and bezafibrate on mitochondrial β-oxidation: Comparison between cultured cells from normal and mitochondrial fatty acid oxidation disorder children using in vitro probe acylcarnitine profiling assay

作者: Hong Li , Seiji Fukuda , Yuki Hasegawa , Hironori Kobayashi , Jamiyan Purevsuren

DOI: 10.1016/J.BRAINDEV.2009.06.001

关键词: Internal medicineIn vitroPalmitic acidBezafibrateElectrospray ionizationTandem mass spectrometryDehydrogenaseAcetylcarnitineFatty acidEndocrinologyBiochemistryChemistryPediatrics, Perinatology, and Child HealthDevelopmental NeuroscienceClinical neurologyGeneral Medicine

摘要: Abstract Hyperpyrexia occasionally triggers acute life-threatening encephalopathy-like illnesses, including influenza-associated encephalopathy (IAE) in childhood, and can be responsible for impaired fatty acid β-oxidation (FAO). In this regard, patients with FAO may more susceptible to febrile episodes. The effects of heat stress a hypolipidemic drug, bezafibrate, on mitochondrial were investigated using cultured cells from children disorders normal controls, an vitro probe acylcarnitine (AC) profiling assay. Fibroblasts incubated medium loaded unlabelled palmitic 96 h at 37 41 °C, or without bezafibrate. AC profiles culture analyzed by electrospray ionization tandem mass spectrometry. Heat stress, introduced significantly increased acetylcarnitine (C2) but slightly decreased the other acylcarnitines (ACs) controls medium-chain acyl-CoA dehydrogenase (MCAD)-deficient cells. On hand, very long-chain (VLCAD)-deficient cells, accumulation ACs enhanced compared that 37 °C. contrast, bezafibrate significant increase C2 both control VLCAD-deficient These data suggest specifically inhibits FAO, whereas recovers FAO. Our approach is simple promising strategy evaluate therapeutic drugs

参考文章(32)
Simon EATON, Kim B BARTLETT, Morteza POURFARZAM, Mammalian mitochondrial beta-oxidation Biochemical Journal. ,vol. 320, pp. 345- 357 ,(1996) , 10.1042/BJ3200345
Sandro Ghisla, Colin Thorpe, Acyl-CoA dehydrogenases - a mechanistic overview FEBS Journal. ,vol. 271, pp. 494- 508 ,(2004) , 10.1046/J.1432-1033.2003.03946.X
Takeshi Sassa, Yoshio Honma, Yuri Yamamoto-Yamaguchi, Ken-ichi Asahi, Yuki Ishii, Cotylenin A, a Differentiation-inducing Agent, and IFN-α Cooperatively Induce Apoptosis and Have an Antitumor Effect on Human Non-Small Cell Lung Carcinoma Cells in Nude Mice Cancer Research. ,vol. 63, pp. 3659- 3666 ,(2003)
Piero Rinaldo, Dietrich Matern, Michael J. Bennett, Fatty Acid Oxidation Disorders Annual Review of Physiology. ,vol. 64, pp. 477- 502 ,(2002) , 10.1146/ANNUREV.PHYSIOL.64.082201.154705
Fátima V. Ventura, Catarina G. Costa, Edward A. Struys, Jos Ruiter, Paul Allers, Lodewijk Ijlst, Isabel Tavares de Almeida, Marinus Duran, Cornelis Jakobs, Ronald J.A. Wanders, Quantitative acylcarnitine profiling in fibroblasts using [U-13C] palmitic acid: an improved tool for the diagnosis of fatty acid oxidation defects. Clinica Chimica Acta. ,vol. 281, pp. 1- 17 ,(1999) , 10.1016/S0009-8981(98)00188-0
G. D. Barish, PPAR : a dagger in the heart of the metabolic syndrome Journal of Clinical Investigation. ,vol. 116, pp. 590- 597 ,(2006) , 10.1172/JCI27955
Fatima Djouadi, Jean-Paul Bonnefont, Laure Thuillier, Véronique Droin, Noman Khadom, Arnold Munnich, Jean Bastin, Correction of fatty acid oxidation in carnitine palmitoyl transferase 2-deficient cultured skin fibroblasts by bezafibrate. Pediatric Research. ,vol. 54, pp. 446- 451 ,(2003) , 10.1203/01.PDR.0000083001.91588.BB
Y. Chen, H. Mizuguchi, D. Yao, M. Ide, Y. Kuroda, Y. Shigematsu, S. Yamaguchi, M. Yamaguchi, M. Kinoshita, H. Kido, Thermolabile phenotype of carnitine palmitoyltransferase II variations as a predisposing factor for influenza-associated encephalopathy. FEBS Letters. ,vol. 579, pp. 2040- 2044 ,(2005) , 10.1016/J.FEBSLET.2005.02.050