The image foresting transform: theory, algorithms, and applications

作者: Alexandre X Falcao , Jorge Stolfi , Roberto de Alencar Lotufo , None

DOI: 10.1109/TPAMI.2004.1261076

关键词: Image segmentationMathematicsImplementationGraph (abstract data type)Transform theoryCorrectnessDijkstra's algorithmAlgorithmTheoretical computer scienceGraph theoryImage processing

摘要: The image foresting transform (IFT) is a graph-based approach to the design of processing operators based on connectivity. It naturally leads correct and efficient implementations better understanding how different relate each other. We give here precise definition IFT, procedure compute it-a generalization Dijkstra's algorithm-with proof correctness. also discuss implementation issues illustrate use IFT in few applications.

参考文章(48)
R.A. Lotufo, A.X. Falcao, F.A. Zampirolli, IFT-Watershed from gray-scale marker brazilian symposium on computer graphics and image processing. pp. 146- 152 ,(2002) , 10.1109/SIBGRA.2002.1167137
G. Castellano, R.A. Lotufo, A.X. Falcao, F. Cendes, Characterization of the human cortex in MR images through the image foresting transform international conference on image processing. ,vol. 1, pp. 357- 360 ,(2003) , 10.1109/ICIP.2003.1246972
Jos B.T.M. Roerdink, Arnold Meijster, The watershed transform: definitions, algorithms and parallelization strategies Fundamenta Informaticae. ,vol. 41, pp. 187- 228 ,(2000) , 10.3233/FI-2000-411207
R.A. Lotufo, A.A. Falcao, F.A. Zampirolli, Fast Euclidean distance transform using a graph-search algorithm brazilian symposium on computer graphics and image processing. pp. 269- 275 ,(2000) , 10.1109/SIBGRA.2000.883922
Per-Erik Danielsson, Euclidean distance mapping Computer Graphics and Image Processing. ,vol. 14, pp. 227- 248 ,(1980) , 10.1016/0146-664X(80)90054-4
James B. Orlin, Thomas L. Magnanti, Ravindra K. Ahuja, Network Flows: Theory, Algorithms, and Applications ,(1993)
Eric N. Mortensen, William A. Barrett, Interactive segmentation with Intelligent Scissors Graphical Models and Image Processing. ,vol. 60, pp. 349- 384 ,(1998) , 10.1006/GMIP.1998.0480
J. A. Sethian, A fast marching level set method for monotonically advancing fronts Proceedings of the National Academy of Sciences of the United States of America. ,vol. 93, pp. 1591- 1595 ,(1996) , 10.1073/PNAS.93.4.1591
A. Frieze, Minimum Paths in Directed Graphs Journal of the Operational Research Society. ,vol. 28, pp. 339- 346 ,(1977) , 10.1057/JORS.1977.57
Ingemar Ragnemalm, Neighborhoods for distance transformations using ordered propagation Cvgip: Image Understanding. ,vol. 56, pp. 399- 409 ,(1992) , 10.1016/1049-9660(92)90050-D