Formalizing constructive mathematics: Why and how?

作者: M. J. Beeson

DOI: 10.1007/BFB0090733

关键词: Formal systemMathematicsChoice functionCalculusDiscrete mathematics

摘要:

参考文章(24)
Michael J. Beeson, Problematic Principles in Constructive Mathematics Logic Colloquium '80 - Papers intended for the European Summer Meeting of the Association for Symbolic Logic. ,vol. 108, pp. 11- 55 ,(1982) , 10.1016/S0049-237X(09)70502-6
Thomas L. Saaty, Lectures on modern mathematics ,(1963)
Michael Beeson, Continuity in Intuitionistic Set Theories Studies in logic and the foundations of mathematics. ,vol. 97, pp. 1- 52 ,(1979) , 10.1016/S0049-237X(08)71619-7
Solomon Feferman, Constructive Theories of Functions and Classes Studies in logic and the foundations of mathematics. ,vol. 97, pp. 159- 224 ,(1979) , 10.1016/S0049-237X(08)71625-2
Stephen Cole Kleene, Richard Eugene Vesley, The foundations of intuitionistic mathematics : especially in relation to recursive functions North-Holland Pub. Co.. ,(1965)
D. S. Bridges, Constructive functional analysis ,(1979)
W. A. Howard, Handbook of mathematical logic North-Holland Pub. Co.. ,(1977) , 10.2307/2274155
Solomon Feferman, A Language and Axioms for Explicit Mathematics Springer Berlin Heidelberg. pp. 87- 139 ,(1975) , 10.1007/BFB0062852
M. Beeson, Recursive models for constructive set theories Annals of Mathematical Logic. ,vol. 23, pp. 127- 178 ,(1982) , 10.1016/0003-4843(82)90003-1