Fundamental size dependent natural frequencies of non-uniform orthotropic nano scaled plates using nonlocal variational principle and finite element method

作者: Ali Reza Shahidi , Amin Anjomshoa , Sayyed Hossein Shahidi , Mehdi Kamrani

DOI: 10.1016/J.APM.2013.02.015

关键词: Plate theoryBoundary value problemMathematical analysisOrthotropic materialFinite element methodVariational principleMathematicsClassical mechanicsDiscretizationRitz methodMesh generation

摘要: Abstract In the present study, a nonlocal continuum model based on Eringen’s theory is developed for vibration analysis of orthotropic nano-plates with arbitrary variation in thickness. Variational principle and Ritz functions are employed to calculate size dependent natural frequencies non-uniform basis classical plate (NCLPT). The eliminate need mesh generation thus large degrees freedom arising discretization methods such as finite element (FE). Effect thickness examined different parameters, mode numbers, geometries boundary conditions. It found that accompanying small scale effect has noticeable plates at nano scale. Also comparison solution performed show ability fast converging exact results. anticipated presented results can be used helpful source design frequency optimization scaled plates.

参考文章(49)
N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity Advances in Applied Mechanics. ,vol. 33, pp. 295- 361 ,(1997) , 10.1016/S0065-2156(08)70388-0
O Civalek, B Akgoz, None, FREE VIBRATION ANALYSIS OF MICROTUBULES AS CYTOSKELETON COMPONENTS: NONLOCAL EULER-BERNOULLI BEAM MODELING Scientia Iranica. ,vol. 17, pp. 367- 375 ,(2010)
A. Cemal Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves Journal of Applied Physics. ,vol. 54, pp. 4703- 4710 ,(1983) , 10.1063/1.332803
F. C. Appl, N. R. Byers, Fundamental Frequency of Simply Supported Rectangular Plates With Linearly Varying Thickness Journal of Applied Mechanics. ,vol. 32, pp. 163- 168 ,(1965) , 10.1115/1.3625713
Patricio A.A. Laura, Roberto H. Gutierrez, Transverse vibrations of orthotropic, non-homogeneous rectangular plates Fibre Science and Technology. ,vol. 21, pp. 125- 133 ,(1984) , 10.1016/0015-0568(84)90024-1
C. T. Sun, Haitao Zhang, Size-dependent elastic moduli of platelike nanomaterials Journal of Applied Physics. ,vol. 93, pp. 1212- 1218 ,(2003) , 10.1063/1.1530365
Lixin Zhang, Hanchen Huang, Young’s moduli of ZnO nanoplates: Ab initio determinations Applied Physics Letters. ,vol. 89, pp. 183111- 183111 ,(2006) , 10.1063/1.2374856
J.K. Phadikar, S.C. Pradhan, Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates Computational Materials Science. ,vol. 49, pp. 492- 499 ,(2010) , 10.1016/J.COMMATSCI.2010.05.040
A Benzair, A Tounsi, A Besseghier, H Heireche, N Moulay, L Boumia, The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory Journal of Physics D: Applied Physics. ,vol. 41, pp. 225404- 225404 ,(2008) , 10.1088/0022-3727/41/22/225404