作者: Jae Hoon Cho , Dong Hwa Kim
DOI: 10.1007/978-3-642-23312-8_30
关键词: Mutual information 、 Machine learning 、 Noisy data 、 Feature selection 、 Classifier (UML) 、 Foraging 、 Algorithm 、 Computer science 、 Artificial intelligence 、 Pattern recognition 、 Relevant feature 、 Information theory
摘要: In this paper, an intelligent feature selection by bacterial foraging algorithm and mutual information is proposed. Feature important issue in the pattern classification problem. Particularly, case of classifying with a large number features or variables, accuracy computational time classifier can be improved using relevant subset to remove irrelevant, redundant, noisy data. The proposed method consists two parts: wrapper part optimization filter information. order select best achieve performance classifiers. Experimental results show that better for recognition problems other than conventional ones.