High order unfitted finite element methods on level set domains using isoparametric mappings

作者: Christoph Lehrenfeld

DOI: 10.1016/J.CMA.2015.12.005

关键词: PiecewiseMathematical optimizationParametric statisticsFinite element methodApplied mathematicsMixed finite element methodNumerical integrationExtended finite element methodSurface integralLevel setMathematics

摘要: Abstract We introduce a new class of unfitted finite element methods with high order accurate numerical integration over curved surfaces and volumes which are only implicitly defined by level set functions. An method is suitable for the case piecewise planar interfaces combined parametric mapping underlying mesh resulting in an isoparametric method. The constructed way such that quality interface reconstruction significantly improved allowing computations (unfitted) domain surface integrals. present method, discuss implementational aspects examples demonstrate potential this

参考文章(32)
P. Oswald, On a BPX-preconditioner for P1 elements Computing. ,vol. 51, pp. 125- 133 ,(1993) , 10.1007/BF02243847
Christian Engwer, Felix Heimann, Dune-UDG: A Cut-Cell Framework for Unfitted Discontinuous Galerkin Methods Springer, Berlin, Heidelberg. pp. 89- 100 ,(2012) , 10.1007/978-3-642-28589-9_7
Erik Burman, Susanne Claus, Peter Hansbo, Mats G. Larson, André Massing, CutFEM: Discretizing geometry and partial differential equations International Journal for Numerical Methods in Engineering. ,vol. 104, pp. 472- 501 ,(2015) , 10.1002/NME.4823
Thomas-Peter Fries, Samir Omerović, Higher‐order accurate integration of implicit geometries International Journal for Numerical Methods in Engineering. ,vol. 106, pp. 323- 371 ,(2016) , 10.1002/NME.5121
Y. Sudhakar, Wolfgang A. Wall, Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods Computer Methods in Applied Mechanics and Engineering. ,vol. 258, pp. 39- 54 ,(2013) , 10.1016/J.CMA.2013.01.007
John W. Barrett, Charles M. Elliott, Finite element approximation of the dirichlet problem using the boundary penalty method Numerische Mathematik. ,vol. 49, pp. 343- 366 ,(1986) , 10.1007/BF01389536
Ivo Babuška, The Finite Element Method with Penalty Mathematics of Computation. ,vol. 27, pp. 221- 228 ,(1973) , 10.1090/S0025-5718-1973-0351118-5
Steffen Basting, Martin Weismann, A hybrid level set-front tracking finite element approach for fluid-structure interaction and two-phase flow applications Journal of Computational Physics. ,vol. 255, pp. 228- 244 ,(2013) , 10.1016/J.JCP.2013.08.018
Maxim A. Olshanskii, Arnold Reusken, Jörg Grande, A Finite Element Method for Elliptic Equations on Surfaces SIAM Journal on Numerical Analysis. ,vol. 47, pp. 3339- 3358 ,(2009) , 10.1137/080717602
Roland Glowinski, Tsorng-Whay Pan, Jacques Periaux, A fictitious domain method for Dirichlet problem and applications Computer Methods in Applied Mechanics and Engineering. ,vol. 111, pp. 283- 303 ,(1994) , 10.1016/0045-7825(94)90135-X