Limitation by an Insufficient Carbon Assimilation and Allocation

作者: Gerhard Wieser

DOI: 10.1007/1-4020-5074-7_6

关键词: Herbaceous plantEcosystem respirationTerrestrial biological carbon cycleWoody plantPrimary productionEnvironmental scienceBiomass (ecology)PhotosynthesisCarbon cycleBotany

摘要: Carbon compounds are the currency that plants accumulate, store, and use to build their structure maintain physiological processes (Waring Schlesinger 1985). Trees differ from other with respect carbon investments in productive tissues support structures. Most of biomass a tree is accumulated woody do not photosynthesize but foliage fine roots (Friend et al. 1994; Gower 1995). Costs for maintaining these supporting conducting high trees when compared dwarf shrubs herbaceous more favourable leaf mass ratio, i.e. dry matter leaves % total plant (Boysen-Jensen 1932; Ellenberg 1975; Stevens Fox 1991; Slatyer Noble 1992; Korner 1994, 2003a; Cairns 1998; Malanson 1998). Thus, beside gain, allocation might be equal importance determining upper limit (Bernoulli 1999). As both interact 1985), we briefly review cycle (Fig. 6.1). begins assimilates atmospheric CO2 through photosynthesis into reduced sugars. Canopy determined by net photosynthetic activity amount active surface area or integrated over selected daily seasonal time periods.

参考文章(119)
T. A. Martin, T. M. Hinckley, F. C. Meinzer, D. G. Sprugel, Boundary layer conductance, leaf temperature and transpiration of Abies amabilis branches. Tree Physiology. ,vol. 19, pp. 435- 443 ,(1999) , 10.1093/TREEPHYS/19.7.435
G C Stevens, J F Fox, THE CAUSES OF TREELINE Annual Review of Ecology, Evolution, and Systematics. ,vol. 22, pp. 177- 191 ,(1991) , 10.1146/ANNUREV.ES.22.110191.001141
Henrik Saxe, Melvin G. R. Cannell, Øystein Johnsen, Michael G. Ryan, George Vourlitis, Tree and forest functioning in response to global warming New Phytologist. ,vol. 149, pp. 369- 399 ,(2001) , 10.1046/J.1469-8137.2001.00057.X
G. HOCH, A. RICHTER, Ch. KÖRNER, Non‐structural carbon compounds in temperate forest trees Plant Cell and Environment. ,vol. 26, pp. 1067- 1081 ,(2003) , 10.1046/J.0016-8025.2003.01032.X
F S Chapin, E Schulze, H A Mooney, The Ecology and Economics of Storage in Plants Annual Review of Ecology, Evolution, and Systematics. ,vol. 21, pp. 423- 447 ,(1990) , 10.1146/ANNUREV.ES.21.110190.002231
T. E. Huxman, A. A. Turnipseed, J. P. Sparks, P. C. Harley, R. K. Monson, Temperature as a control over ecosystem CO2 fluxes in a high-elevation, subalpine forest. Oecologia. ,vol. 134, pp. 537- 546 ,(2003) , 10.1007/S00442-002-1131-1
I. Tanya Handa, Christian Körner, Stephan Hättenschwiler, A TEST OF THE TREELINE CARBON LIMITATION HYPOTHESIS BY IN SITU CO2ENRICHMENT AND DEFOLIATION Ecology. ,vol. 86, pp. 1288- 1300 ,(2005) , 10.1890/04-0711
Eva Falge, Dennis Baldocchi, John Tenhunen, Marc Aubinet, Peter Bakwin, Paul Berbigier, Christian Bernhofer, George Burba, Robert Clement, Kenneth J Davis, Jan A Elbers, Allen H Goldstein, Achim Grelle, André Granier, Jón Guðmundsson, David Hollinger, Andrew S Kowalski, Gabriel Katul, Beverly E Law, Yadvinder Malhi, Tilden Meyers, Russell K Monson, J.William Munger, Walt Oechel, Kyaw Tha Paw U, Kim Pilegaard, Üllar Rannik, Corinna Rebmann, Andrew Suyker, Riccardo Valentini, Kell Wilson, Steve Wofsy, Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements Agricultural and Forest Meteorology. ,vol. 113, pp. 53- 74 ,(2002) , 10.1016/S0168-1923(02)00102-8
J. Paulsen, U. M. Weber, Ch. Körner, Tree Growth near Treeline: Abrupt or Gradual Reduction with Altitude? Arctic, Antarctic, and Alpine Research. ,vol. 32, pp. 14- 20 ,(2000) , 10.1080/15230430.2000.12003334