Enhancing the Leaching of Chalcopyrite Using Acidithiobacillus ferrooxidans under the Induction of Surfactant Triton X-100

作者: Ruiyang Zhang , Chunbao Sun , Jue Kou , Hongyu Zhao , Dezhou Wei

DOI: 10.3390/MIN9010011

关键词: CopperChalcopyriteNuclear chemistryLeaching (metallurgy)SulfurBioleachingChemistryPulmonary surfactantTriton X-100Copper sulfide

摘要: Chalcopyrite is the richest copper sulfide mineral in world, but it also most resistant to biohydrometallurgical processing. To promote bioleaching of chalcopyrite, a nonionic surfactant, t-octyl phenoxy polyethoxy ethanol (Triton X-100), was employed this paper. Action Triton X-100 chalcopyrite leaching using Acidithiobacillus ferrooxidans explored shake flasks. Results showed that 30 mg·L−1 increased yield by 42.21% compared process without additive after 24 days. Under stress X-100, efficiency slightly dropped at an early stage, remarkably afterwards. XRD and XPS analysis leach residues demonstrated potassium jarosite elemental sulfur resulted surface passivation. Surfactant appeared induce oxidation bacteria owing increase hydrophobicity. These results suggest itself has no ability under its induction, can be enhanced due removal passivation layer.

参考文章(54)
Hong-chang Liu, Jin-lan Xia, Zhen-yuan Nie, Relatedness of Cu and Fe speciation to chalcopyrite bioleaching by Acidithiobacillus ferrooxidans Hydrometallurgy. ,vol. 156, pp. 40- 46 ,(2015) , 10.1016/J.HYDROMET.2015.05.013
Hadi Abdollahi, Mohammad Noaparast, Sied Ziaedin Shafaei, Zahra Manafi, Jesús A. Muñoz, Olli H. Tuovinen, Silver-catalyzed bioleaching of copper, molybdenum and rhenium from a chalcopyrite–molybdenite concentrate International Biodeterioration & Biodegradation. ,vol. 104, pp. 194- 200 ,(2015) , 10.1016/J.IBIOD.2015.05.025
M. Lotfalian, M. Ranjbar, M.H. Fazaelipoor, M. Schaffie, Z. Manafi, The effect of redox control on the continuous bioleaching of chalcopyrite concentrate Minerals Engineering. ,vol. 81, pp. 52- 57 ,(2015) , 10.1016/J.MINENG.2015.07.006
Reza Dehghan, Mahdie Dianati, The effects of Pb-Zn flotation reagents on the bioleaching process by mesophilic bacteria International Journal of Mineral Processing. ,vol. 143, pp. 80- 86 ,(2015) , 10.1016/J.MINPRO.2015.09.007
Sarah L. Harmer, Joan E. Thomas, Daniel Fornasiero, Andrea R. Gerson, The evolution of surface layers formed during chalcopyrite leaching Geochimica et Cosmochimica Acta. ,vol. 70, pp. 4392- 4402 ,(2006) , 10.1016/J.GCA.2006.06.1555
Jon H. Tuttle, Patrick R. Dugan, Inhibition of growth, iron, and sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds. Canadian Journal of Microbiology. ,vol. 22, pp. 719- 730 ,(1976) , 10.1139/M76-105
Preston Devasia, K.A. Natarajan, Adhesion of Acidithiobacillus ferrooxidans to mineral surfaces International Journal of Mineral Processing. ,vol. 94, pp. 135- 139 ,(2010) , 10.1016/J.MINPRO.2010.02.003
Kai-bin Fu, Hai Lin, Xiao-lan Mo, Han Wang, Hong-wei Wen, Zi-long Wen, Comparative study on the passivation layers of copper sulphide minerals during bioleaching International Journal of Minerals Metallurgy and Materials. ,vol. 19, pp. 886- 892 ,(2012) , 10.1007/S12613-012-0643-X
Karina Sałek, Ewa Kaczorek, Urszula Guzik, Agnieszka Zgoła-Grześkowiak, Bacterial properties changing under Triton X-100 presence in the diesel oil biodegradation systems: from surface and cellular changes to mono- and dioxygenases activities Environmental Science and Pollution Research. ,vol. 22, pp. 4305- 4315 ,(2015) , 10.1007/S11356-014-3668-Z
Mario Vera, Axel Schippers, Wolfgang Sand, Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A Applied Microbiology and Biotechnology. ,vol. 97, pp. 7529- 7541 ,(2013) , 10.1007/S00253-013-4954-2