Averaging for Ordinary Dierential Equations and Functional Dierential Equations

作者: Tewfik Sari

DOI:

关键词: Time variableLipschitz continuitySpatial variableVector fieldMathematicsPerturbation (astronomy)Uniform continuityMathematical analysis

摘要: A nonstandard approach to averaging theory for ordinary dierential equations and functional is developed. We define a notion of perturbation we obtain results under weaker conditions than the in literature. The classical theorems approximate solutions system by averaged system, Lipschitz continuous vector fields, when exist on same interval as system. extend these perturbations fields which are uniformly spatial variable with respect time without any restriction existence solution.

参考文章(20)
Mustapha Lakrib, On the averaging method for differential equations with delay. Electronic Journal of Differential Equations, 2002, San Marcos, Texas: Southwest Texas State University and University of North Texas.. ,vol. 2002, ,(2002)
W. A. J. Luxemburg, K. D. Stroyan, Introduction to the theory of infinitesimals ,(1976)
Francine Diener, Marc Diener, Nonstandard Analysis in Practice ,(1995)
Georges Reeb, F Diener, Analyse non standard Hermann. ,(1989)
J. Salanskis, Hourya Sinaceur, Le Labyrinthe du Continu Colloque de Cerisy Springer-Verlag. ,(1992)
A. Troesch, A. Fruchard, Colloque trajectorien à la mémoire de Georges Reeb et Jean-Louis Callot, Strasbourg-Obernai, 12-16 juin 1995 Institut de recherche mathématique avancée, Université Louis Pasteur et C.N.R.S. (URA 01). ,(1995)
Ferdinand Verhulst, Jan A. Sanders, Averaging Methods in Nonlinear Dynamical Systems ,(1985)
Imme van den Berg, Nonstandard Asymptotic Analysis ,(1987)