Nuclear dimension and $$\mathcal Z$$ Z -stability

作者: Yasuhiko Sato , Stuart White , Wilhelm Winter

DOI: 10.1007/S00222-015-0580-1

关键词: UnitalStability (probability)Trace (linear algebra)Algebra over a fieldDimension (graph theory)Pure mathematicsConjectureSeparable spaceSimple (abstract algebra)Mathematics

摘要: Simple, separable, unital, monotracial and nuclear C$^*$-algebras are shown to have finite dimension whenever they absorb the Jiang-Su algebra $\mathcal{Z}$ tensorially. This completes proof of Toms-Winter conjecture in unique trace case.

参考文章(52)
Allan M. Sinclair, Roger R. Smith, Finite Von Neumann Algebras and Masas ,(2008)
Masamichi Takesaki, Theory of Operator Algebras II ,(1979)
Uffe Haagerup, Quasitraces on Exact $C^\ast$-Algebras are Traces arXiv: Operator Algebras. ,vol. 858, pp. 106- 129 ,(1994)
Wilhelm Winter, Strongly self-absorbing C*-algebras are Z-stable arXiv: Operator Algebras. ,(2009)
S. White, W. Winter, A. S. Toms, $\mathcal Z$-stability and finite dimensional tracial boundaries arXiv: Operator Algebras. ,(2012) , 10.1093/IMRN/RNU001
Selcuk Barlak, Hiroku Matui, Gabor Szabo, Wilhelm Winter, Dominic Enders, The Rokhlin property vs. Rokhlin dimension 1 on unital Kirchberg algebras arXiv: Operator Algebras. ,(2013) , 10.4171/JNCG/226
Joachim Zacharias, Wilhelm Winter, Completely positive maps of order zero arXiv: Operator Algebras. ,(2009)
Hiroki Matui, Yasuhiko Sato, Strict comparison and Z-absorption of nuclear C∗-algebras Acta Mathematica. ,vol. 209, pp. 179- 196 ,(2012) , 10.1007/S11511-012-0084-4