Smooth Sparse Coding via Marginal Regression for Learning Sparse Representations

作者: Krishnakumar Balasubramanian , Kai Yu , Guy Lebanon

DOI:

关键词: Pattern recognitionMathematicsSparse approximationScale (descriptive set theory)Neural codingKernel smootherK-SVDArtificial intelligenceSimilarity (geometry)Feature (machine learning)Generalization

摘要: We propose and analyze a novel framework for learning sparse representations, based on two statistical techniques: kernel smoothing marginal regression. The proposed approach provides flexible incorporating feature similarity or temporal information present in data sets, via non-parametric smoothing. provide generalization bounds dictionary using smooth coding show how the sample complexity depends L1 norm of function used. Furthermore, we regression obtaining codes, which significantly improves speed allows one to scale large sizes easily. demonstrate advantages approach, both terms accuracy by extensive experimentation several real sets. In addition, can be used improving semi-supervised coding.

参考文章(32)
Rémi Gribonval, Rodolphe Jenatton, Francis R. Bach, Local stability and robustness of sparse dictionary learning in the presence of noise arXiv: Machine Learning. pp. 41- ,(2012)
Rodolphe Jenatton, Julien Mairal, Guillaume R. Obozinski, Francis R. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning international conference on machine learning. pp. 487- 494 ,(2010)
M. V. Solodov, Convergence Analysis of Perturbed Feasible Descent Methods Journal of Optimization Theory and Applications. ,vol. 93, pp. 337- 353 ,(1997) , 10.1023/A:1022602123316
Luc Devroye, Gábor Lugosi, Combinatorial Methods in Density Estimation ,(2011)
Thomas Huang, Jianchao Yang, Kai Yu, Supervised translation-invariant sparse coding computer vision and pattern recognition. pp. 3517- 3524 ,(2010) , 10.1109/CVPR.2010.5539958
Heng Wang, Muhammad Muneeb Ullah, Alexander Klaser, Ivan Laptev, Cordelia Schmid, Evaluation of local spatio-temporal features for action recognition british machine vision conference. pp. 1- 11 ,(2009) , 10.5244/C.23.124
Trevor Hastie, Clive Loader, Local Regression: Automatic Kernel Carpentry Statistical Science. ,vol. 8, pp. 120- 129 ,(1993) , 10.1214/SS/1177011002
Kai Yu, Yuanqing Lin, John Lafferty, Learning image representations from the pixel level via hierarchical sparse coding CVPR 2011. pp. 1713- 1720 ,(2011) , 10.1109/CVPR.2011.5995732
Alexander Klaser, Marcin Marszałek, Cordelia Schmid, A Spatio-Temporal Descriptor Based on 3D-Gradients british machine vision conference. pp. 1- 10 ,(2008) , 10.5244/C.22.99