A new cluster algorithm for orientation data

作者: H. Schaeben

DOI: 10.1007/BF01032213

关键词: Orientation (computer vision)Sensitivity (control systems)Cluster algorithmData pointSteepest ascentDifferentiable functionAlgorithmMathematical optimizationCluster (physics)MathematicsDensity estimation

摘要: An algorithm to classify data points on the sphere in distinct cluster groups is defined. The characteristics of and rule for assigning are related a continuous differentiable density estimation. modes estimated assumed be representative groups; then assigned mode reached by steepest ascent. major advantage this procedure its sensitivity detecting independently their geometry configuration. As consequence, capable handling orientation that may arranged girdles.

参考文章(16)
Henry J. Kelley, Method of Gradients Mathematics in Science and Engineering. ,vol. 5, pp. 205- 254 ,(1962) , 10.1016/S0076-5392(08)62094-9
Francis Henry Charles Marriott, The interpretation of multiple observations ,(1974)
Eckard Wallbrecher, Ein Cluster-Verfahren zur richtungsstatistischen Analyse tektonischer Daten International Journal of Earth Sciences. ,vol. 67, pp. 840- 857 ,(1978) , 10.1007/BF01983240