作者: Antonio Eleuteri , Roberto Tagliaferri , Leopoldo Milano , Michele de Laurentiis
DOI: 10.1016/B978-044452855-1/50009-X
关键词: Minification 、 Pattern recognition 、 Divergence (statistics) 、 Feature selection 、 Information geometry 、 Artificial intelligence 、 Survival analysis 、 Artificial neural network 、 Computer science 、 Probability of failure 、 Bayesian inference
摘要: In this chapter, an information geometric approach to survival analysis is described. It shown how a neural network can be used model the probability of failure system, and it trained by minimizing suitable divergence functional in Bayesian framework. By using network, minimization same allows for fast, efficient exact feature selection. Finally, performance algorithms illustrated on some datasets.