Sets with a negative number of elements

作者: D Loeb

DOI: 10.1016/0001-8708(92)90011-9

关键词: CombinatoricsNegative numberMathematicsDiscrete mathematicsGeneralizationMultisetGaussian binomial coefficientSymmetric functionStirling numberVariable (mathematics)Binomial coefficient

摘要: We will define an analog of a set which can contain either positive or negative number elements. allow sums to be calculated over arbitrary hybrid set. This lead us generalization symmetric functions variable agrees with all previous known generalizations in this direction. From these new functions, we calculate generalized binomial coefficients. Then coefficients given combinatorial interpretation terms partial order on the sets. Next, generalize linear partitions using and enumerate them. Finally, sum from one integer derive formulas involving them including Stirling numbers.

参考文章(6)
Daniel E Loeb, Gian-Carlo Rota, Formal power series of logarithmic type Advances in Mathematics. ,vol. 75, pp. 1- 118 ,(1989) , 10.1016/0001-8708(89)90079-0
Daniel E. Loeb, A generalization of the binomial coefficients Discrete Mathematics. ,vol. 105, pp. 143- 156 ,(1992) , 10.1016/0012-365X(92)90138-6
Daniel E. Loeb, A generalization of the Stirling numbers Discrete Mathematics. ,vol. 103, pp. 259- 269 ,(1992) , 10.1016/0012-365X(92)90318-A
Ian Grant Macdonald, Symmetric functions and Hall polynomials ,(1979)
John Horton Conway, On Numbers and Games ,(1976)
Donald E Knuth, Subspaces, subsets, and partitions Journal of Combinatorial Theory, Series A. ,vol. 10, pp. 178- 180 ,(1971) , 10.1016/0097-3165(71)90022-7