Modular exponentiation using parallel multipliers

作者: S.H. Tang , K.S. Tsui , P.H.W. Leong

DOI: 10.1109/FPT.2003.1275731

关键词: Carry (arithmetic)Public-key cryptographyField-programmable gate arrayChinese remainder theoremModular exponentiationComputer scienceComputer hardwareFpga architectureScheme (programming language)Public key cryptosystem

摘要: A field programmable gate array (FPGA) semi-systolic implementation of a modular exponentiation unit, suitable for use in implementing the RSA public key cryptosystem is presented. The design carefully matched with features FPGA architecture, utilizing embedded 18/spl times/18-bit multipliers on and employing carry save addition scheme. Using this 1024-bit can operate at 90 MHz Xilinx XC2V3000-6 device perform decryption 0.66 ms Chinese Remainder Theorem.

参考文章(15)
Stephen R. Dussé, Burton S. Kaliski, A cryptographic library for the Motorola DSP56000 theory and application of cryptographic techniques. pp. 230- 244 ,(1991) , 10.1007/3-540-46877-3_21
Kouichi Itoh, Masahiko Takenaka, Naoya Torii, Syouji Temma, Yasushi Kurihara, Fast Implementation of Public-Key Cryptography ona DSP TMS320C6201 cryptographic hardware and embedded systems. pp. 61- 72 ,(1999) , 10.1007/3-540-48059-5_7
P. Kornerup, A systolic, linear-array multiplier for a class of right-shift algorithms IEEE Transactions on Computers. ,vol. 43, pp. 892- 898 ,(1994) , 10.1109/12.295851
R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems Communications of the ACM. ,vol. 26, pp. 96- 99 ,(1983) , 10.1145/357980.358017
Peter L. Montgomery, Modular multiplication without trial division Mathematics of Computation. ,vol. 44, pp. 519- 521 ,(1985) , 10.1090/S0025-5718-1985-0777282-X
T. Blum, C. Paar, High-radix Montgomery modular exponentiation on reconfigurable hardware IEEE Transactions on Computers. ,vol. 50, pp. 759- 764 ,(2001) , 10.1109/12.936241
Chung-Hsien Wu, Jin-Hua Hong, Cheng-Wen Wu, RSA cryptosystem design based on the Chinese remainder theorem asia and south pacific design automation conference. pp. 391- 395 ,(2001) , 10.1145/370155.370419
H. Orup, Simplifying quotient determination in high-radix modular multiplication Proceedings of the 12th Symposium on Computer Arithmetic. pp. 193- 199 ,(1995) , 10.1109/ARITH.1995.465359
P. Kornerup, High-radix modular multiplication for cryptosystems symposium on computer arithmetic. pp. 277- 283 ,(1993) , 10.1109/ARITH.1993.378082