Modeling and predicting responses of magnetoelectric materials

作者: Ben Xu , Ce-Wen Nan

DOI: 10.1557/MRS.2018.259

关键词: Field (physics)Simulation methodsEnergy materialsKey issuesComputer scienceMagnetizationEngineering physicsCoupling (physics)Computational design

摘要: Magnetoelectric (ME) materials exhibit cross-coupling effects between magnetization and polarization, by which one can manipulate the (or polarization) with an electric magnetic) field. To better understand responses of ME coupling mechanisms involved, various simulation methods at different scales, ranging from electronic atomic scale to mesoscale, have been developed in past decades. In this article, we summarize recent progress modeling predicting materials, present our perspectives on key issues that require further study, including multiscale approaches dealing dynamic processes. The potential illuminate processes device response external fields eventually be used for guidance data-driven computational design new devices.

参考文章(61)
David Beaujouan, Pascal Thibaudeau, Cyrille Barreteau, Anisotropic magnetic molecular dynamics of cobalt nanowires Physical Review B. ,vol. 86, pp. 174409- ,(2012) , 10.1103/PHYSREVB.86.174409
Joshua Young, James M. Rondinelli, Atomic Scale Design of Polar Perovskite Oxides without Second-Order Jahn–Teller Ions Chemistry of Materials. ,vol. 25, pp. 4545- 4550 ,(2013) , 10.1021/CM402550Q
Xiao Wang, Yisheng Chai, Long Zhou, Huibo Cao, Clarina-dela Cruz, Junye Yang, Jianhong Dai, Yunyu Yin, Zhen Yuan, Sijia Zhang, Runze Yu, Masaki Azuma, Yuichi Shimakawa, Huimin Zhang, Shuai Dong, Young Sun, Changqing Jin, Youwen Long, Observation of Magnetoelectric Multiferroicity in a Cubic Perovskite System: LaMn 3 Cr 4 O 12 Physical Review Letters. ,vol. 115, pp. 087601- 087601 ,(2015) , 10.1103/PHYSREVLETT.115.087601
Pui-Wai Ma, S.L. Dudarev, C.H. Woo, SPILADY: A parallel CPU and GPU code for spin–lattice magnetic molecular dynamics simulations Computer Physics Communications. ,vol. 207, pp. 350- 361 ,(2016) , 10.1016/J.CPC.2016.05.017
Dilina Perera, Markus Eisenbach, Don M. Nicholson, G. Malcolm Stocks, David P. Landau, Reinventing atomistic magnetic simulations with spin-orbit coupling Physical Review B. ,vol. 93, pp. 060402- ,(2016) , 10.1103/PHYSREVB.93.060402
Yakui Weng, Lingfang Lin, Elbio Dagotto, Shuai Dong, Inversion of Ferrimagnetic Magnetization by Ferroelectric Switching via a Novel Magnetoelectric Coupling. Physical Review Letters. ,vol. 117, pp. 037601- ,(2016) , 10.1103/PHYSREVLETT.117.037601
M. Graf, M. Sepliarsky, M. G. Stachiotti, Atomic-level study of BiFe O 3 under epitaxial strain Physical Review B. ,vol. 94, pp. 054101- ,(2016) , 10.1103/PHYSREVB.94.054101
Carlos Escorihuela-Sayalero, Jacek C. Wojdeł, Jorge Íñiguez, Efficient systematic scheme to construct second-principles lattice dynamical models Physical Review B. ,vol. 95, pp. 094115- ,(2017) , 10.1103/PHYSREVB.95.094115
V. Botu, R. Batra, J. Chapman, R. Ramprasad, Machine Learning Force Fields: Construction, Validation, and Outlook Journal of Physical Chemistry C. ,vol. 121, pp. 511- 522 ,(2017) , 10.1021/ACS.JPCC.6B10908
Dezhen Xue, Prasanna V. Balachandran, Ruihao Yuan, Tao Hu, Xiaoning Qian, Edward R. Dougherty, Turab Lookman, Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 113, pp. 13301- 13306 ,(2016) , 10.1073/PNAS.1607412113