The Crystal Structure of Apatite, Ca5(PO4)3(F,OH,Cl)

作者: J. M. Hughes , J. Rakovan

DOI: 10.2138/RMG.2002.48.1

关键词: Organic chemistryPhosphorus cycleChemistryEarth (classical element)ApatiteMetalPhosphoric acidSolid solutionMineralInorganic chemistryBiogeochemical cycle

摘要: As illustrated by the broad range of topics presented in this volume, mineral apatite, Ca5(PO4)3(F,OH,Cl), is importance a greater variety fields than virtually any other mineral. It particular significance Earth science, life and material science; foundation apatite atomic arrangement. Apatite most abundant naturally occurring phosphate on Earth. Consequently, it major source phosphorous, both as an ore base global phosphorous cycle. critical for production huge quantities fertilizers, detergents phosphoric acid; extracted also used many applications such phosphors, rust removers, motor fuels, insecticides to name but few (McConnell 1973). The biogeochemical cycling starts its release from at Earth’s surface ultimately leads formation geological apatites through sedimentary processes or tectonic recycling. Along way, however, essential element all (Filippelli, volume). The structure chemistry allow numerous substitutions, including multitude metal cations (i.e., K, Na, Mn, Ni, Cu, Co, Zn, Sr, Ba, Pb, Cd, Sb, Y, REEs, U) that substitute Ca structure, anionic complexes AsO43−, SO42−, CO32−, SiO44−, etc.) replace PO43− (Pan Fleet, volume). Indeed, incorporates half periodic chart arrangement. These substitutions are usually trace concentrations, large concentrations even complete solid solutions exist certain substituents. This complex variable has great implications, utilized areas …

参考文章(20)
C Gleitzer, JB Goodenough, BG Hyde, M O’Keeffe, U Weser, M O’Keeffe, BG Hyde, An alternative approach to non-molecular crystal structures with emphasis on the arrangements of cations Springer Berlin Heidelberg. pp. 77- 144 ,(1985) , 10.1007/BFB0111193
Ann M Budy, Franklin C. McLean, Radiation Isotopes and Bone ,(1964)
E.B. Watson, T.M. Harrison, Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approaches Physics of the Earth and Planetary Interiors. ,vol. 35, pp. 19- 30 ,(1984) , 10.1016/0031-9201(84)90031-1
J. S. Prener, The Growth and Crystallographic Properties of Calcium Fluor‐ and Chlorapatite Crystals Journal of The Electrochemical Society. ,vol. 114, pp. 77- 83 ,(1967) , 10.1149/1.2426512
K. Sudarsanan, R. A. Young, Significant precision in crystal structural details. Holly Springs hydroxyapatite Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. ,vol. 25, pp. 1534- 1543 ,(1969) , 10.1107/S0567740869004298
M. I. KAY, R. A. YOUNG, A. S. POSNER, CRYSTAL STRUCTURE OF HYDROXYAPATITE. Nature. ,vol. 204, pp. 1050- 1052 ,(1964) , 10.1038/2041050A0
L. Peter Gromet, Leon T. Silver, Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications Geochimica et Cosmochimica Acta. ,vol. 47, pp. 925- 939 ,(1983) , 10.1016/0016-7037(83)90158-8
E.Bruce Watson, C.J. Capobianco, Phosphorus and the rare earth elements in felsic magmas: an assessment of the role of apatite Geochimica et Cosmochimica Acta. ,vol. 45, pp. 2349- 2358 ,(1981) , 10.1016/0016-7037(81)90088-0