A self-consistent study of triaxial deformations in heavy nuclei

作者: N. Redon , J. Meyer , M. Meyer , P. Quentin , M.S. Weiss

DOI: 10.1016/0370-2693(86)90036-5

关键词: Lattice (order)Oblate spheroidAtomic physicsNucleusAxial symmetryPhysicsSelf consistentMaxima and minimaProlate spheroid

摘要: Abstract Lattice Hartree-Fock + BCS calculations for axially asymmetrical solutions have been extended to heavy nuclei. The deformation energy surfaces in a (β, γ) sextant the 138 Sm and 192 Os nuclei exhibit shallow triaxial minimum, while valley connecting smoothly oblate prolate minima is found 186 Pt nucleus.

参考文章(25)
M. Beiner, H. Flocard, Nguyen Van Giai, P. Quentin, Nuclear ground-state properties and self-consistent calculations with the skyrme interaction Nuclear Physics A. ,vol. 238, pp. 29- 69 ,(1975) , 10.1016/0375-9474(75)90338-3
A. Ansari, Shape transition in Os and Pt isotopes Physical Review C. ,vol. 33, pp. 321- 329 ,(1986) , 10.1103/PHYSREVC.33.321
C. Ekström, S. Ingelman, G. Wannberg, M. Skarestad, Nuclear spins and magnetic moments of some cesium isotopes Nuclear Physics. ,vol. 292, pp. 144- 164 ,(1977) , 10.1016/0375-9474(77)90363-3
I. Ragnarsson, A. Sobiczewski, R.K. Sheline, S.E. Larsson, B. Nerlo-pomorska, Comparison of potential-energy surfaces and moments of inertia with experimental spectroscopic trends for non-spherical Z = 50–82 nuclei Nuclear Physics A. ,vol. 233, pp. 329- 356 ,(1974) , 10.1016/0375-9474(74)90460-6
M Baranger, M Vénéroni, An adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems Annals of Physics. ,vol. 114, pp. 123- 200 ,(1978) , 10.1016/0003-4916(78)90265-8
Richard B. Firestone, Virginia S. Shirley, Table of isotopes ,(1978)
J. Meyer ter Vehn, F. S. Stephens, R. M. Diamond, Evidence for asymmetric shapes from high-spin odd-A spectra Physical Review Letters. ,vol. 32, pp. 1383- 1386 ,(1974) , 10.1103/PHYSREVLETT.32.1383
K.T.R. Davies, H. Flocard, S. Krieger, M.S. Weiss, Application of the imaginary time step method to the solution of the static Hartree-Fock problem Nuclear Physics A. ,vol. 342, pp. 111- 123 ,(1980) , 10.1016/0375-9474(80)90509-6
A.S. Davydov, G.F. Filippov, Rotational states in even atomic nuclei Nuclear Physics. ,vol. 8, pp. 237- 249 ,(1958) , 10.1016/0029-5582(58)90153-6
A. Hayashi, K. Hara, P. Ring, Existence of Triaxial Shapes in Transitional Nuclei Physical Review Letters. ,vol. 53, pp. 337- 340 ,(1984) , 10.1103/PHYSREVLETT.53.337