Bi-dimensional Domains for the Non-overlapping Rectangles Constraint

作者: Fabio Parisini

DOI: 10.1007/978-3-540-89982-2_85

关键词: Consistency (knowledge bases)IntersectionCombinatoricsConstraint (information theory)Mathematical optimizationSet (abstract data type)Container (type theory)Mathematics

摘要: Given a set of rectangles and bi-dimensional container, the non-overlapping constraint aims to obtain consistency such that all can be placed without intersection inside box. So, nonOverlapping ([R 1 ,...,R n ],Box ) holds iff are Box no two R i j overlap.

参考文章(11)
Helmut Simonis, Barry O’Sullivan, Search Strategies for Rectangle Packing principles and practice of constraint programming. pp. 52- 66 ,(2008) , 10.1007/978-3-540-85958-1_4
Michael D. Moffitt, Martha E. Pollack, Optimal rectangle packing: a meta-CSP approach international conference on automated planning and scheduling. pp. 93- 102 ,(2006)
Michael Trick, Michela Milano, Constraint and Integer Programming ,(2003)
Nicolas Beldiceanu, Mats Carlsson, Sweep as a Generic Pruning Technique Applied to the Non-overlapping Rectangles Constraint principles and practice of constraint programming. pp. 377- 391 ,(2001) , 10.1007/3-540-45578-7_26
Pascal Hentenryck, Vijay Saraswat, Yves Deville, Design, Implementation, and Evaluation of the Constraint Language cc(FD) Selected Papers from Constraint Programming: Basics and Trends. pp. 293- 316 ,(1994) , 10.1007/3-540-59155-9_15
N Beldiceanu, E Contejean, Introducing global constraints in CHIP Mathematical and Computer Modelling. ,vol. 20, pp. 97- 123 ,(1994) , 10.1016/0895-7177(94)90127-9
Abderrahmane Aggoun, Nicolas Beldiceanu, Extending chip in order to solve complex scheduling and placement problems Mathematical and Computer Modelling. ,vol. 17, pp. 57- 73 ,(1993) , 10.1016/0895-7177(93)90068-A
Jean-Charles Régin, Global Constraints and Filtering Algorithms Springer US. pp. 89- 135 ,(2004) , 10.1007/978-1-4419-8917-8_4
Richard E. Korf, Optimal rectangle packing: new results international conference on automated planning and scheduling. pp. 142- 149 ,(2004)