关键词: Mathematical analysis 、 Combinatorics 、 Maxima 、 Limit of a function 、 Limit distribution 、 Relative stability 、 Mathematics 、 Distribution (mathematics)
摘要: $\{X_n, n \geqq 1\}$ are $\operatorname{i.i.d.}$ random variables with continuous $\operatorname{df} F(x). X_j$ is a record value of this sequence if $X_j > \max \{X_1,\cdots, X_{j-1}\}$. We compare the behavior values $\{X_{L_n}\}$ that sample maxima $\{M_n\} = \{\max (X_1,\cdots, X_n)\}$. Conditions for relative stability ($\operatorname{a.s.}$ and $\operatorname{i.p.}$) given in each case these conditions imply $\{M_n\}$. In particular regular variation $R(x) \equiv - \log (1 F(x))$ an easily verified condition which insures $\operatorname{a.s.}$ $\{X_{L_n}\}, \{M_n\}$ $\{\sum^n_{j=1} M_j\}$. Concerning limit laws, $X_{L_n}$ may converge distribution without $\{M_n\}$ having vice versa. Suitable differentiability on $F(x)$ insure both sequences have distribution.