Modelling urban growth patterns

作者: Hernán A. Makse , Shlomo Havlin , H. Eugene Stanley

DOI: 10.1038/377608A0

关键词: Statistical physicsPercolation (cognitive psychology)MathematicsCluster (physics)Urban areaDistribution (economics)ScalingUrban planningFractalUrbanization

摘要: CITIES grow in a way that might be expected to resemble the growth of two-dimensional aggregates particles, and this has led recent attempts1a¤-3 model urban using ideas from statistical physics clusters. In particular, diffusion-limited aggregation4,5 (DLA) been invoked rationalize apparently fractal nature morphologies1. The DLA predicts there should exist only one large cluster, which is almost perfectly screened incoming a¤˜development unitsa¤™ (representing, for example, people, capital or resources), so all cluster takes place at tips clustera¤™s branches. Here we show an alternative model, development units are correlated rather than being added random, better able reproduce observed morphology cities area distribution sub-clusters (a¤˜towns') system, can also describe dynamics. Our physical corresponds percolation model6a¤-8 presence density gradient9, motivated by fact areas attracts further development. offers possibility predicting global properties (such as scaling behaviour) morphologies.

参考文章(11)
Pierre Frankhauser, La fractalité des structures urbaines Anthropos : Diffusion, Economica. pp. 291- ,(1994)
L. Benguigui, A new aggregation model. Application to town growth Physica A-statistical Mechanics and Its Applications. ,vol. 219, pp. 13- 26 ,(1995) , 10.1016/0378-4371(95)00145-W
T. A. Witten, L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon Physical Review Letters. ,vol. 47, pp. 1400- 1403 ,(1981) , 10.1103/PHYSREVLETT.47.1400
L. Benguigui, M. Daoud, Is the Suburban Railway System a Fractal? Geographical Analysis. ,vol. 23, pp. 362- 368 ,(2010) , 10.1111/J.1538-4632.1991.TB00245.X
Sona Prakash, Shlomo Havlin, Moshe Schwartz, H. Eugene Stanley, Structural and dynamical properties of long-range correlated percolation Physical Review A. ,vol. 46, ,(1992) , 10.1103/PHYSREVA.46.R1724
Hernán Makse, Shlomo Havlin, H. Eugene Stanley, Moshe Schwartz, Novel Method for Generating Long-Range Correlations Chaos Solitons & Fractals. ,vol. 6, pp. 295- 303 ,(1995) , 10.1016/0960-0779(95)80035-F
Jean-François Gouyet, Amy L. R. Bug, Physics and Fractal Structures ,(1996)
B. Sapoval, M. Rosso, J.F. Gouyet, The fractal nature of a diffusion front and the relation to percolation Journal de Physique Lettres. ,vol. 46, pp. 149- 156 ,(1985) , 10.1051/JPHYSLET:01985004604014900
Tamás Vicsek, Harvey Gould, Fractal Growth Phenomena ,(1989)
Edwin S. Mills, Jee Peng Tan, A Comparison of Urban Population Density Functions in Developed and Developing Countries Urban Studies. ,vol. 17, pp. 313- 321 ,(1980) , 10.1080/00420988020080621