Effects of variations in electron thermal velocity on the whistler anisotropy instability: Particle-in-cell simulations

作者: R. Scott Hughes , Joseph Wang , Viktor K. Decyk , S. Peter Gary

DOI: 10.1063/1.4945748

关键词: Thermal velocityCondensed matter physicsParticle-in-cellMagnetic fieldWhistlerElectronSolar windInstabilityPhysicsAnisotropy

摘要: This paper investigates how the physics of whistler anisotropy instability (WAI) is affected by variations in electron thermal velocity vte, referred to here terms ratio vte=vte/c, where c speed light. The WAI driven condition RT>1, RT=Te⊥/Te∥ temperature and ⊥/∥ signify directions perpendicular/parallel background magnetic field B0. While a typical value vte solar wind ∼0.005, electromagnetic (EM) particle-in-cell (PIC) simulations often use near 0.1 order maximize computational time step. In this study, two-dimensional (2D) Darwin (DPIC) code, MDPIC2, used. step DPIC model not choice making suited for study. A series are carried out under that βe held fixed, while varied over range 0.1≥vte≥0.025. results show that, with linear dispers...

参考文章(36)
Ouliang Chang, S. Peter Gary, Joseph Wang, Whistler turbulence at variable electron beta: Three‐dimensional particle‐in‐cell simulations Journal of Geophysical Research. ,vol. 118, pp. 2824- 2833 ,(2013) , 10.1002/JGRA.50365
CLAIR W. NIELSON, H. RALPH LEWIS, Particle-code models in the nonradiative limit Methods in Computational Physics: Advances in Research and Applications. ,vol. 16, pp. 367- 388 ,(1976) , 10.1016/B978-0-12-460816-0.50015-4
R. Scott Hughes, S. Peter Gary, Joseph Wang, Electron and ion heating by whistler turbulence: Three‐dimensional particle‐in‐cell simulations Geophysical Research Letters. ,vol. 41, pp. 8681- 8687 ,(2014) , 10.1002/2014GL062070
Jungyeon Cho, A. Lazarian, The Anisotropy of Electron Magnetohydrodynamic Turbulence The Astrophysical Journal. ,vol. 615, ,(2004) , 10.1086/425215
J Busnardo-Neto, P.L Pritchett, A.T Lin, J.M Dawson, A self-consistent magnetostatic particle code for numerical simulation of plasmas Journal of Computational Physics. ,vol. 23, pp. 300- 312 ,(1977) , 10.1016/0021-9991(77)90096-1
J. A. Newbury, C. T. Russell, J. L. Phillips, S. P. Gary, Electron temperature in the ambient solar wind: Typical properties and a lower bound at 1 AU Journal of Geophysical Research. ,vol. 103, pp. 9553- 9566 ,(1998) , 10.1029/98JA00067
Allan N. Kaufman, The Darwin Model as a Tool for Electromagnetic Plasma Simulation Physics of Fluids. ,vol. 14, pp. 446- 448 ,(1971) , 10.1063/1.1693451
O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, J. Mitchell, S. J. Schwartz, P. Robert, Universality of Solar-Wind Turbulent Spectrum from MHD to Electron Scales Physical Review Letters. ,vol. 103, pp. 165003- ,(2009) , 10.1103/PHYSREVLETT.103.165003
Michael D. Montgomery, S. J. Bame, A. J. Hundhausen, Solar wind electrons: Vela 4 measurements Journal of Geophysical Research. ,vol. 73, pp. 4999- 5003 ,(1968) , 10.1029/JA073I015P04999