Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns

作者: Jui-Sheng Chou , Ngoc-Tri Ngo

DOI: 10.1016/J.APENERGY.2016.05.074

关键词: EngineeringSmart gridEnergy consumptionArtificial intelligenceMachine learningEnergy (signal processing)Data miningAutoregressive integrated moving averageSupport vector machineSliding window protocolFirefly algorithmMetaheuristic

摘要: … prediction system in identifying building energy consumption patterns. Accordingly, a … building to monitor real-time sensor data. The experiment was set in a typical three-story building …

参考文章(64)
Ilhami Colak, Gianluca Fulli, Seref Sagiroglu, Mehmet Yesilbudak, Catalin-Felix Covrig, Smart grid projects in Europe: Current status, maturity and future scenarios Applied Energy. ,vol. 152, pp. 58- 70 ,(2015) , 10.1016/J.APENERGY.2015.04.098
Ina Khandelwal, Ratnadip Adhikari, Ghanshyam Verma, Time Series Forecasting Using Hybrid ARIMA and ANN Models Based on DWT Decomposition Procedia Computer Science. ,vol. 48, pp. 173- 179 ,(2015) , 10.1016/J.PROCS.2015.04.167
Emanuele Crisostomi, Claudio Gallicchio, Alessio Micheli, Marco Raugi, Mauro Tucci, Prediction of the Italian electricity price for smart grid applications Neurocomputing. ,vol. 170, pp. 286- 295 ,(2015) , 10.1016/J.NEUCOM.2015.02.089
Shahaboddin Shamshirband, Kasra Mohammadi, Por Lip Yee, Dalibor Petković, Ali Mostafaeipour, A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation Renewable & Sustainable Energy Reviews. ,vol. 52, pp. 1031- 1042 ,(2015) , 10.1016/J.RSER.2015.07.173
L. De Boeck, S. Verbeke, A. Audenaert, L. De Mesmaeker, Improving the energy performance of residential buildings: A literature review Renewable & Sustainable Energy Reviews. ,vol. 52, pp. 960- 975 ,(2015) , 10.1016/J.RSER.2015.07.037
Katia Gregio Di Santo, Eduardo Kanashiro, Silvio Giuseppe Di Santo, Marco Antonio Saidel, A review on smart grids and experiences in Brazil Renewable & Sustainable Energy Reviews. ,vol. 52, pp. 1072- 1082 ,(2015) , 10.1016/J.RSER.2015.07.182
C.M.C. Roque, P.A.L.S. Martins, Differential evolution for optimization of functionally graded beams Composite Structures. ,vol. 133, pp. 1191- 1197 ,(2015) , 10.1016/J.COMPSTRUCT.2015.08.041
Jos De Brabanter, Tony Van Gestel, Joos Vandewalle, Bart De Moor, Johan A K Suykens, Least Squares Support Vector Machines ,(2002)
Wenjie Zhang, Shan Liu, Nianping Li, Hui Xie, Xuanqi Li, Development forecast and technology roadmap analysis of renewable energy in buildings in China Renewable & Sustainable Energy Reviews. ,vol. 49, pp. 395- 402 ,(2015) , 10.1016/J.RSER.2015.04.135
C. Sandels, J. Widén, L. Nordström, E. Andersson, Day-Ahead Predictions of Electricity Consumption in a Swedish Office Building from Weather, Occupancy, and Temporal data Energy and Buildings. ,vol. 108, pp. 279- 290 ,(2015) , 10.1016/J.ENBUILD.2015.08.052