Data-driven fuzzy sets for classification

作者: Sofia Visa , Anca Ralescu

DOI: 10.1504/IJAIP.2008.020817

关键词: Machine learningType-2 fuzzy sets and systemsArtificial intelligenceFuzzy measure theoryDefuzzificationComputer sciencePattern recognitionMembership functionFuzzy numberFuzzy setFuzzy classificationFuzzy set operations

摘要: Using the mass assignment mechanism, a fuzzy classifier can be derived directly from class relative frequency distribution. Moreover, in this framework, family of sets represent class, thus adapting to need classification. Graduality and corresponding concept error used guide process deriving representing sets. The classification algorithm is attractive due its low complexity. Successful applications include imbalanced data problems where having fewer examples interest.

参考文章(15)
Anca L. Ralescu, Sofia Visa, Fuzzy classifiers for imbalanced data sets University of Cincinnati. ,(2007)
B. W. Pilsworth, T. P. Martin, J. F. Baldwin, Fril- Fuzzy and Evidential Reasoning in Artificial Intelligence Research Studies Press. ,(1995)
Ravi. Jain, Ajith. Abraham, A Comparative Study of Fuzzy Classifiers on Breast Cancer Data international work-conference on artificial and natural neural networks. pp. 512- 519 ,(2009) , 10.1007/3-540-44869-1_65
Dan Ralescu, Cardinality, quantifiers, and the aggregation of fuzzy criteria Fuzzy Sets and Systems. ,vol. 69, pp. 355- 365 ,(1995) , 10.1016/0165-0114(94)00177-9
C.V. NEGOITA, D.A. RALESCU, REPRESENTATION THEOREMS FOR FUZZY CONCEPTS Kybernetes. ,vol. 4, pp. 65- 70 ,(1975) , 10.1108/EB005392
Anca L. Ralescu, A note on rule representation in expert systems Information Sciences. ,vol. 38, pp. 193- 203 ,(1986) , 10.1016/0020-0255(86)90020-4
Eyke Hüllermeier, Fuzzy methods in machine learning and data mining: Status and prospects Fuzzy Sets and Systems. ,vol. 156, pp. 387- 406 ,(2005) , 10.1016/J.FSS.2005.05.036
A. De Luca, S. Termini, A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory Information & Computation. ,vol. 20, pp. 301- 312 ,(1972) , 10.1016/S0019-9958(72)90199-4
Satya R. Chakravarty, Tirthankar Roy, Measurement of fuzziness: a general approach Theory and Decision. ,vol. 19, pp. 163- 169 ,(1985) , 10.1007/BF00132441
D. Dubois, E. Hullermeier, H. Prade, Fuzzy set-based methods in instance-based reasoning IEEE Transactions on Fuzzy Systems. ,vol. 10, pp. 322- 332 ,(2002) , 10.1109/TFUZZ.2002.1006435