Neural Networks and Unconstrained Optimization

作者: L. C. W. Dixon

DOI: 10.1007/978-94-009-0369-2_19

关键词: AlgorithmRadial basis function networkUnconstrained optimizationComputer scienceStochastic neural networkRadial basis functionFunction (mathematics)BackpropagationArtificial neural networkParallel processing (DSP implementation)

摘要: When performing the unconstrained optimisation of a complicated industrial problem, main computational time is usually spent in calculation objective function and its derivatives. The performed sequentially, so if parallel processing machine to be used, then either number evaluations must calculated or sequential replaced by calculation.

参考文章(11)
Robert Hecht-Nielsen, The Munificence of High Dimensionality international conference on artificial neural networks. pp. 1017- 1030 ,(1992) , 10.1016/B978-0-444-89488-5.50041-5
L C W Dixon, K D Patel, P G Ducksbury, Experience running optimisation algorithms on parallel processing systems Springer, Berlin, Heidelberg. pp. 891- 917 ,(1984) , 10.1007/BFB0008964
Laurence C. W. Dixon, David Mills, Neural nets for massively parallel optimization Proceedings of SPIE. ,vol. 1710, pp. 229- 238 ,(1992) , 10.1117/12.140088
L. C. W. Dixon, D. J. Mills, Neural networks and nonlinear optimization i the representation of continuous functions Optimization Methods & Software. ,vol. 1, pp. 141- 151 ,(1992) , 10.1080/10556789208805513
G. Cybenko, Approximation by superpositions of a sigmoidal function Mathematics of Control, Signals, and Systems. ,vol. 2, pp. 303- 314 ,(1989) , 10.1007/BF02551274
J. E. Dennis, Virginia Torczon, Direct Search Methods on Parallel Machines Operations Research ’91. ,vol. 1, pp. 5- 6 ,(1992) , 10.1007/978-3-642-48417-9_2
BRUCE CHRISTIANSON, Automatic Hessians by reverse accumulation Ima Journal of Numerical Analysis. ,vol. 12, pp. 135- 150 ,(1992) , 10.1093/IMANUM/12.2.135
Andrew R Barron, None, Universal approximation bounds for superpositions of a sigmoidal function IEEE Transactions on Information Theory. ,vol. 39, pp. 930- 945 ,(1993) , 10.1109/18.256500
R. Hecht-Nielsen, Theory of the Back Propagation Neural Network international joint conference on neural network. ,vol. 1, pp. 593- 605 ,(1989)
John Taylor, ARTIFICIAL NEURAL NETWORKS, 2 ,(1992)