Expressing the Kaplan-Meier estimator as a function of empirical subsurvival functions

作者: Arthur V. Peterson

DOI: 10.1080/01621459.1977.10479970

关键词: Nelson–Aalen estimatorMathematicsStatisticsMinimum-variance unbiased estimatorEstimatorStein's unbiased risk estimateInvariant estimatorEfficient estimatorApplied mathematicsBayes estimatorKaplan–Meier estimator

摘要: Abstract The Kaplan-Meier estimator for the survival function in censored data problem can be expressed finite samples as an explicit of two empirical subsurvival functions. This is natural one that expresses terms sub-survival As illustration usefulness expressing this way, strong consistency easily proved.

参考文章(8)
B. Efron, The two sample problem with censored data Proc. Fifth Berkely Symp. Math. Statist. Prob.. ,vol. 4, pp. 831- 853 ,(1967)
David R. Cox, Regression Models and Life-Tables Springer Series in Statistics. ,vol. 34, pp. 527- 541 ,(1992) , 10.1007/978-1-4612-4380-9_37
E. L. Kaplan, Paul Meier, Nonparametric Estimation from Incomplete Observations Springer Series in Statistics. ,vol. 53, pp. 319- 337 ,(1992) , 10.1007/978-1-4612-4380-9_25
A. Tsiatis, A nonidentifiability aspect of the problem of competing risks. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 72, pp. 20- 22 ,(1975) , 10.1073/PNAS.72.1.20
N. Breslow, J. Crowley, A Large Sample Study of the Life Table and Product Limit Estimates Under Random Censorship Annals of Statistics. ,vol. 2, pp. 437- 453 ,(1974) , 10.1214/AOS/1176342705
Shelemyahu Zacks, The theory of statistical inference ,(1971)
Paul Meier, Estimation of a Distribution Function from Incomplete Observations Journal of Applied Probability. ,vol. 12, pp. 67- 87 ,(1975) , 10.1017/S0021900200047574
E. L. Kaplan, Paul Meier, Nonparametric Estimation from Incomplete Observations Journal of the American Statistical Association. ,vol. 53, pp. 457- 481 ,(1958) , 10.1080/01621459.1958.10501452