Ice nucleation rates near ∼225 K.

作者: Andrew J. Amaya , Barbara E. Wyslouzil

DOI: 10.1063/1.5019362

关键词: SupercoolingThermodynamicsAtmospheric temperature rangeIce nucleusProperties of waterClassical nucleation theoryHomogeneousInternal pressureMaterials scienceNucleation

摘要: We have measured the ice nucleation rates, Jice, in supercooled nano-droplets with radii ranging from 6.6 nm to 10 and droplet temperatures, Td, 225 K 204 K. The initial temperature of water droplets is ∼250 K, i.e., well above homogeneous for micron sized droplets, TH ∼235 rates increase systematically ∼1021 cm−3 s−1 ∼1022 this range, overlap Manka et al. [Phys. Chem. Phys. 14, 4505 (2012)], suggest that experiments larger would extrapolate smoothly Hagen [J. Atmos. Sci. 38, 1236 (1981)]. sharp corner rate data as drops is, however, difficult match available theory even if we correct classical physical properties high internal pressure nanodroplets.

参考文章(57)
Lawrence S. Bartell, Yaroslav G. Chushak, Nucleation of Ice in Large Water Clusters: Experiment and Simulation Water in Confining Geometries. pp. 399- 424 ,(2003) , 10.1007/978-3-662-05231-0_17
Hartawan Laksmono, Trevor A. McQueen, Jonas A. Sellberg, N. Duane Loh, Congcong Huang, Daniel Schlesinger, Raymond G. Sierra, Christina Y. Hampton, Dennis Nordlund, Martin Beye, Andrew V. Martin, Anton Barty, M. Marvin Seibert, Marc Messerschmidt, Garth J. Williams, Sébastien Boutet, Katrin Amann-Winkel, Thomas Loerting, Lars G. M. Pettersson, Michael J. Bogan, Anders Nilsson, Anomalous Behavior of the Homogeneous Ice Nucleation Rate in No-Man's Land Journal of Physical Chemistry Letters. ,vol. 6, pp. 2826- 2832 ,(2015) , 10.1021/ACS.JPCLETT.5B01164
Donald E. Hagen, Rodney J. Anderson, James L. Kassner, Homogeneous Condensation—Freezing Nucleation Rate Measurements for Small Water Droplets in an Expansion Cloud Chamber Journal of the Atmospheric Sciences. ,vol. 38, pp. 1236- 1243 ,(1981) , 10.1175/1520-0469(1981)038<1236:HCNRMF>2.0.CO;2
Harshad Pathak, Kelley Mullick, Shinobu Tanimura, Barbara E. Wyslouzil, Nonisothermal Droplet Growth in the Free Molecular Regime Aerosol Science and Technology. ,vol. 47, pp. 1310- 1324 ,(2013) , 10.1080/02786826.2013.839980
P. Taborek, Nucleation in emulsified supercooled water. Physical Review B. ,vol. 32, pp. 5902- 5906 ,(1985) , 10.1103/PHYSREVB.32.5902
P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher, J. Frisch, S. Gilevich, J. Hastings, G. Hays, Ph. Hering, Z. Huang, R. Iverson, H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H.-D. Nuhn, G. Pile, D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner, J. Welch, W. White, J. Wu, G. Yocky, J. Galayda, First lasing and operation of an ångstrom-wavelength free-electron laser Nature Photonics. ,vol. 4, pp. 641- 647 ,(2010) , 10.1038/NPHOTON.2010.176
John Russo, Flavio Romano, Hajime Tanaka, New metastable form of ice and its role in the homogeneous crystallization of water Nature Materials. ,vol. 13, pp. 733- 739 ,(2014) , 10.1038/NMAT3977
Peter Stöckel, Inez M. Weidinger, Helmut Baumgärtel, Thomas Leisner, Rates of homogeneous ice nucleation in levitated H2O and D2O droplets. Journal of Physical Chemistry A. ,vol. 109, pp. 2540- 2546 ,(2005) , 10.1021/JP047665Y