Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm

作者: Ute Bradter , William E. Kunin , John D. Altringham , Tim J. Thom , Tim G. Benton

DOI: 10.1111/J.2041-210X.2012.00253.X

关键词: Random forestScale (ratio)StatisticsScale modelSpatial analysisEconometricsMathematicsFeature selectionData pointExplained variationLogistic regression

摘要: … -scale processes and result in more accurate predictions of species distributions. In this study, we investigate whether the random forest algorithm, a machine learning method based on …

参考文章(42)
Matthew Wiener, Andy Liaw, Classification and Regression by randomForest ,(2007)
J. E. Waltham, W. D. Holmes, North East England Cambridge University Press. ,(1974)
Janet Franklin, Jennifer A. Miller, Mapping Species Distributions: Spatial Inference and Prediction ,(2010)
Ramón Díaz-Uriarte, Sara Alvarez de Andrés, Gene selection and classification of microarray data using random forest BMC Bioinformatics. ,vol. 7, pp. 3- 3 ,(2006) , 10.1186/1471-2105-7-3
Roger S Bivand, Edzer J Pebesma, Virgilio Gómez-Rubio, Edzer Jan Pebesma, None, Applied spatial data analysis with R Springer. ,(2013) , 10.1007/978-1-4614-7618-4
Jenny A. Hodgson, Atte Moilanen, Brendan A. Wintle, Chris D. Thomas, Habitat area, quality and connectivity: striking the balance for efficient conservation Journal of Applied Ecology. ,vol. 48, pp. 148- 152 ,(2011) , 10.1111/J.1365-2664.2010.01919.X
Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, Torsten Hothorn, Bias in random forest variable importance measures: Illustrations, sources and a solution BMC Bioinformatics. ,vol. 8, pp. 25- 25 ,(2007) , 10.1186/1471-2105-8-25