Formation of Fabry-Perot resonances in double-barrier chaotic billiards

作者: A. M. S. Macêdo , Andre M. C. Souza

DOI: 10.1103/PHYSREVE.71.066218

关键词: Dynamical billiardsQuantum chaosChaoticQuantum electrodynamicsErgodic theoryPhysicsQuantumScatteringQuantum mechanicsSemiclassical physicsScattering theory

摘要: We study wave transport through a chaotic quantum billiard attached to two waveguides via barriers of arbitrary transparencies in the semiclassical limit large number open scattering channels. focus attention on ergodic regime, which is described by using random-matrix approach resonance together with an extended version Nazarov's circuit theory. By varying relative strength barriers' reorganization relevant resonances energy interval where takes place leads full suppression high transmission modes. provide detailed quantitative description process means both numerical and analytical evaluations average density eigenvalues. show that Fabry-Perot modes can be used as kind order parameter for this transition. A diagram presented function exhibiting regimes transition lines.

参考文章(38)
E. Persson, I. Rotter, H.-J. Stöckmann, M. Barth, Observation of resonance trapping in an open microwave cavity Physical Review Letters. ,vol. 85, pp. 2478- 2481 ,(2000) , 10.1103/PHYSREVLETT.85.2478
N. Lehmann, D. Saher, V.V. Sokolov, H.-J. Sommers, Chaotic scattering: the supersymmetry method for large number of channels Nuclear Physics. ,vol. 582, pp. 223- 256 ,(1995) , 10.1016/0375-9474(94)00460-5
A. M. S. Macêdo, Scaling theory of phase-coherent metallic conductors Physical Review B. ,vol. 66, pp. 033306- ,(2002) , 10.1103/PHYSREVB.66.033306
K. E. Nagaev, P. Samuelsson, S. Pilgram, Cascade approach to current fluctuations in a chaotic cavity Physical Review B. ,vol. 66, pp. 195318- ,(2002) , 10.1103/PHYSREVB.66.195318
Yan V. Fyodorov, Boris A. Khoruzhenko, Systematic Analytical Approach to Correlation Functions of Resonances in Quantum Chaotic Scattering Physical Review Letters. ,vol. 83, pp. 65- 68 ,(1999) , 10.1103/PHYSREVLETT.83.65
C.H Lewenkopf, H.A Weidenmüller, Stochastic versus semiclassical approach to quantum chaotic scattering Annals of Physics. ,vol. 212, pp. 53- 83 ,(1991) , 10.1016/0003-4916(91)90372-F
J. T. Chalker, M. Bernhardt, Scattering theory, transfer matrices, and Anderson localization. Physical Review Letters. ,vol. 70, pp. 982- 985 ,(1993) , 10.1103/PHYSREVLETT.70.982
J.J.M. Verbaarschot, H.A. Weidenmüller, M.R. Zirnbauer, Grassmann integration in stochastic quantum physics: The case of compound-nucleus scattering Physics Reports. ,vol. 129, pp. 367- 438 ,(1985) , 10.1016/0370-1573(85)90070-5
P. W. Brouwer, C. W. J. Beenakker, Diagrammatic method of integration over the unitary group, with applications to quantum transport in mesoscopic systems Journal of Mathematical Physics. ,vol. 37, pp. 4904- 4934 ,(1996) , 10.1063/1.531667