Symmetries, conservation laws and Hamiltonian structures of the non-isospectral and variable coefficient KdV and MKdV equations

作者: W L Chan , Xiao Zhang

DOI: 10.1088/0305-4470/28/2/016

关键词: Hamiltonian (quantum mechanics)Korteweg–de Vries equationVariable coefficientIsospectralMathematical physicsInfinite numberAlgebraic structureMathematicsConservation lawHomogeneous spaceAlgebra

摘要: An infinite number of form-invariant symmetries is obtained and a one-to-one correspondence between conservation laws established for the non-isospectral variable coefficient generalizations both KdV MKdV equations. Two families their Lie algebraic structures are constructed. Some interesting facts about Hamiltonian presented.

参考文章(10)
Miki Wadati, Invariances and Conservation Laws of the Korteweg‐de Vries Equation Studies in Applied Mathematics. ,vol. 59, pp. 153- 186 ,(1978) , 10.1002/SAPM1978592153
T Chou, Symmetries and a hierarchy of the general KdV equation Journal of Physics A. ,vol. 20, pp. 359- 366 ,(1987) , 10.1088/0305-4470/20/2/021
T Chou, Symmetries and a hierarchy of the general modified KdV equation Journal of Physics A. ,vol. 20, pp. 367- 374 ,(1987) , 10.1088/0305-4470/20/2/022
W. L. Chan, Li Kam‐Shun, Nonpropagating solitons of the variable coefficient and nonisospectral Korteweg–de Vries equation Journal of Mathematical Physics. ,vol. 30, pp. 2521- 2526 ,(1989) , 10.1063/1.528533
Junru Wu, Robert Keolian, Isadore Rudnick, Observation of a nonpropagating hydrodynamic soliton Physical Review Letters. ,vol. 52, pp. 1421- 1424 ,(1984) , 10.1103/PHYSREVLETT.52.1421
W. L. Chan, Zheng Yu-Kun, Solutons of a nonisospectral and variable coefficient Korteweg-de Vries equation Letters in Mathematical Physics. ,vol. 14, pp. 293- 301 ,(1987) , 10.1007/BF00402138
A. S. Fokas, P. M. Santini, A UNIFIED APPROACH TO RECURSION OPERATORS Institute for Mathematics and Its Applications. ,vol. 24, pp. 79- 96 ,(1990) , 10.1007/978-1-4613-9033-6_5
D. H. Sattinger, Hamiltonian Hierarchies on Semisimple Lie Algebras Studies in Applied Mathematics. ,vol. 72, pp. 65- 86 ,(1985) , 10.1002/SAPM198572165