Prediction of flow through rockfill dams using a neuro-fuzzy computing technique

作者: Majid Heydari , Parisa Hosseinzadeh Talaee

DOI: 10.22436/JMCS.02.03.15

关键词: Neuro-fuzzyFinite volume methodGeotechnical engineeringFuzzy modelFlow (mathematics)Finite element methodInference systemEngineeringNumerical analysisMembership function

摘要: Rockfill dams are economical and fast tools for flood detention control purposes. Artificial intelligence approaches may provide user-friendly alternatives to very complex time-consuming numerical methods such as finite volume element predicting flow through rockfill dam. Therefore, this paper examines the potential of coactive neuro-fuzzy inference system (CANFIS) estimation trapezoidal rectangular dams. The results showed that accurate predictions can be achieved with a CANFIS Takagi–Sugeno–Kang (TSK) fuzzy model Bell membership function both Furthermore, LevenbergMarquardt Delta-Bar-Delta were best algorithms training network in order estimate dams, respectively. Overall, study suggest possibility using prediction

参考文章(45)
Ozgur Kisi, Suspended sediment estimation using neuro-fuzzy and neural network approaches Hydrological Sciences Journal-journal Des Sciences Hydrologiques. ,vol. 50, pp. 683- 696 ,(2005)
Eng Aik Lim, Yogan Jayakumar, A Study of Neuro-fuzzy System in Approximation-based Problems Mathematika. ,vol. 24, pp. 113- 130 ,(2008) , 10.11113/MATEMATIKA.V24.N.534
David A. Stephenson, Rockfill in hydraulic engineering ,(1979)
FUMIHIKO IMAMURA, DANG VAN TO, Flood and typhoon disasters in Viet Nam in the half century since 1950 Natural Hazards. ,vol. 15, pp. 71- 87 ,(1997) , 10.1023/A:1007923910887
D. K. Gautam, K. P. Holz, Rainfall-runoff modelling using adaptive neuro-fuzzy systems Journal of Hydroinformatics. ,vol. 3, pp. 3- 10 ,(2001) , 10.2166/HYDRO.2001.0002
Sujata Gupta, Akram Javed, Divya Datt, Economics of Flood Protection in India Natural Hazards. ,vol. 28, pp. 199- 210 ,(2003) , 10.1023/A:1021142404009
Latha Parthiban, R. Subramanian, Intelligent Heart Disease Prediction System Using CANFIS and Genetic Algorithm World Academy of Science, Engineering and Technology, International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering. ,vol. 1, pp. 278- 281 ,(2007)
P.C Nayak, K.P Sudheer, D.M Rangan, K.S Ramasastri, A neuro-fuzzy computing technique for modeling hydrological time series Journal of Hydrology. ,vol. 291, pp. 52- 66 ,(2004) , 10.1016/J.JHYDROL.2003.12.010
Özgür Kişi, None, Daily pan evaporation modelling using a neuro-fuzzy computing technique Journal of Hydrology. ,vol. 329, pp. 636- 646 ,(2006) , 10.1016/J.JHYDROL.2006.03.015
A.K. Lohani, N.K. Goel, K.K.S. Bhatia, Takagi–Sugeno fuzzy inference system for modeling stage–discharge relationship Journal of Hydrology. ,vol. 331, pp. 146- 160 ,(2006) , 10.1016/J.JHYDROL.2006.05.007