Complete Intersection Hom Injective Dimension

作者: Sean K. Sather-Wagstaff , Jonathan P. Totushek

DOI:

关键词: Hom functorBounded functionConjectureInjective functionMathematicsInvariant (mathematics)Pure mathematicsTensor productComplete intersectionLocal ring

摘要: We introduce and investigate a new injective version of the complete intersection dimension Avramov, Gasharov, Peeva. It is like Sahandi, Sharif, Yassemi in that it built using quasi-deformations. Ours different, however, we use Hom functor place tensor product. show (a) this invariant characterizes property for local rings, (b) fits between classical G-injective Enochs Jenda, (c) provides modules with Bass numbers are bounded by polynomials, (d) improves theorem Peskine, Szpiro, Roberts (Bass' conjecture).% finitely generated finite dimension.

参考文章(20)
Robin Hartshorne, Residues and duality ,(1966)
Parviz Sahandi, Siamak Yassemi, Tirdad Sharif, Homological flat dimensions arXiv: Commutative Algebra. ,(2007)
Yves Félix, Jean-Claude Thomas, Stephen Halperin, Rational Homotopy Theory ,(2000)
Yuri I. Manin, Sergei I. Gelfand, Methods of Homological Algebra ,(1996)
Lars Winther Christensen, Semi-dualizing complexes and their Auslander categories Transactions of the American Mathematical Society. ,vol. 353, pp. 1839- 1883 ,(2001) , 10.1090/S0002-9947-01-02627-7
Hyman Bass, On the ubiquity of Gorenstein rings Mathematische Zeitschrift. ,vol. 82, pp. 8- 28 ,(1963) , 10.1007/BF01112819
Maurice Auslander, David A. Buchsbaum, Homological dimension in local rings Transactions of the American Mathematical Society. ,vol. 85, pp. 390- 405 ,(1957) , 10.1090/S0002-9947-1957-0086822-7
Luchezar L. Avramov, Hans-Bjørn Foxby, Homological dimensions of unbounded complexes Journal of Pure and Applied Algebra. ,vol. 71, pp. 129- 155 ,(1991) , 10.1016/0022-4049(91)90144-Q
Anders Frankild, Sean Sather-Wagstaff, The set of semidualizing complexes is a nontrivial metric space Journal of Algebra. ,vol. 308, pp. 124- 143 ,(2007) , 10.1016/J.JALGEBRA.2006.06.017
Leo G. Chouinard, On finite weak and injective dimension Proceedings of the American Mathematical Society. ,vol. 60, pp. 57- 60 ,(1976) , 10.1090/S0002-9939-1976-0417158-7