Exact and explicit travelling wave solutions for the nonlinear Drinfeld–Sokolov system

作者: Abdul-Majid Wazwaz

DOI: 10.1016/J.CNSNS.2004.10.001

关键词: Variety (universal algebra)Hyperbolic functionNonlinear systemPower (physics)Traveling waveMathematicsMathematical analysisIntegrable system

摘要: … [2], [3](1) u t + ( v 2 ) x = 0 , v t - av xxx + 3 bu x v + 3 kuv x = 0 , where a, b and k are constants. … It is well-known that the KdV equation(2) u t + ( u 2 ) x + u xxx = 0 describes long nonlinear …

参考文章(30)
Abdul-Majid Wazwaz, Partial differential equations : methods and applications A.A. Balkema. ,(2002)
Miki Wadati, The Exact Solution of the Modified Korteweg-de Vries Equation Journal of the Physical Society of Japan. ,vol. 32, pp. 1681- 1681 ,(1972) , 10.1143/JPSJ.32.1681
S. Dusuel, P. Michaux, M. Remoissenet, From kinks to compactonlike kinks Physical Review E. ,vol. 57, pp. 2320- 2326 ,(1998) , 10.1103/PHYSREVE.57.2320
Abdul-Majid Wazwaz, Distinct variants of the KdV equation with compact and noncompact structures Applied Mathematics and Computation. ,vol. 150, pp. 365- 377 ,(2004) , 10.1016/S0096-3003(03)00238-8
A.M. Wazwaz, Compactons dispersive structures for variants of the K(n,n) and the KP equations Chaos, Solitons & Fractals. ,vol. 13, pp. 1053- 1062 ,(2002) , 10.1016/S0960-0779(01)00109-6
Philip Rosenau, James M. Hyman, Compactons: Solitons with finite wavelength. Physical Review Letters. ,vol. 70, pp. 564- 567 ,(1993) , 10.1103/PHYSREVLETT.70.564