作者: Mehdi Rezaei
DOI: 10.1093/MNRAS/STZ394
关键词: Free parameter 、 Dark energy 、 Bayesian probability 、 Markov chain Monte Carlo 、 Work (thermodynamics) 、 Bayesian information criterion 、 Statistical physics 、 Physics 、 Akaike information criterion 、 Space (mathematics)
摘要: In this study we combine the background and growth rate data in order to ability of two oscillating dark energy parameterizations, fit observational data. Using likelihood MCMC method try explore posterior space put constraints on free parameters models. Based values well known Akaike Bayesian information criteria find that both models considered work are disfavored by combined (background+growth rate) Although using expansion can not reject models, analysis provides strong evidences against these