A multi-scale non-linear vessel enhancement technique

作者: B. Abdollahi , A. El-Baz , A. A. Amini

DOI: 10.1109/IEMBS.2011.6090975

关键词: Diffusion (business)Edge-preserving smoothingPattern recognitionSmoothingComputer visionStatistical parameterMathematicsExpectation–maximization algorithmFilter (signal processing)Diffusion filterArtificial intelligenceImage segmentation

摘要: We present an enhancement method based on nonlinear diffusion filter and statistical intensity approaches for smoothing extracting 3-D vascular system from Magnetic Resonance Angiography (MRA) data. Our distinguishes enhances the vessels other embedded tissues. The Expectation Maximization (EM) technique is employed with non-linear in order to find optimal contrast enhancing vessels; therefore, while dimming tissues around brightening vessels. smooths homogeneous regions preserving edges. EM finds parameters probability distribution of classes discriminate image. has been applied 4 MRA-TOF datasets consisting 300 images compared regularized Perona Malik filter. experimental results show that proposed image, keeping only eliminating signal In comparison, conventional keeps unwanted addition

参考文章(22)
Joachim Weickert, Coherence-Enhancing Diffusion Filtering International Journal of Computer Vision. ,vol. 31, pp. 111- 127 ,(1999) , 10.1023/A:1008009714131
Joachim Weickert, Anisotropic diffusion in image processing B. G. Teubner. ,(1998)
Joachim Weickert, None, A Review of Nonlinear Diffusion Filtering Lecture Notes in Computer Science. pp. 3- 28 ,(1997) , 10.1007/3-540-63167-4_37
R MANNIESING, M VIERGEVER, W NIESSEN, Vessel enhancing diffusion: A scale space representation of vessel structures Medical Image Analysis. ,vol. 10, pp. 815- 825 ,(2006) , 10.1016/J.MEDIA.2006.06.003
C. Lorenz, I. -C. Carlsen, T. M. Buzug, C. Fassnacht, J. Weese, Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images CVRMed-MRCAS '97 Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medial Robotics and Computer-Assisted Surgery. pp. 233- 242 ,(1997) , 10.1007/BFB0029242
Karl Krissian, Grégoire Malandain, Nicholas Ayache, Régis Vaillant, Yves Trousset, Model-Based Detection of Tubular Structures in 3D Images Computer Vision and Image Understanding. ,vol. 80, pp. 130- 171 ,(2000) , 10.1006/CVIU.2000.0866
B. Fischl, E.L. Schwartz, Learned adaptive nonlinear filtering for anisotropic diffusion approximation in image processing international conference on pattern recognition. ,vol. 4, pp. 276- 280 ,(1996) , 10.1109/ICPR.1996.547430
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
Yongjian Yu, Joseph Yadegar, Regularized Speckle Reducing Anisotropic Diffusion for Feature Characterization international conference on image processing. pp. 1577- 1580 ,(2006) , 10.1109/ICIP.2006.312609
Yoshinobu Sato, Shin Nakajima, Nobuyuki Shiraga, Hideki Atsumi, Shigeyuki Yoshida, Thomas Koller, Guido Gerig, Ron Kikinis, Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images Medical Image Analysis. ,vol. 2, pp. 143- 168 ,(1998) , 10.1016/S1361-8415(98)80009-1