Category-Based Intrusion Detection Using PCA

作者: Gholam Reza Zargar , Tania Baghaie

DOI: 10.4236/JIS.2012.34033

关键词: Pattern recognitionData miningArtificial intelligenceFeature selectionPrincipal component analysisIntrusion detection systemFeature (computer vision)Computer scienceIP headerDenial-of-service attackAnomaly-based intrusion detection systemIdentification (information)

摘要: Existing Intrusion Detection Systems (IDS) examine all the network features to detect intrusion or misuse patterns. In feature-based detection, some selected may found be redundant, useless less important than rest. This paper proposes a category-based selection of effective parameters for detection using Principal Components Analysis (PCA). this paper, 32 basic from TCP/IP header, and 116 derived TCP dump are in traffic dataset. Attacks categorized four groups, Denial Service (DoS), Remote User attack (R2L), (U2R) Probing attack. DARPA 1998 dataset is used experiments as PCA method determine an optimal feature set make process faster. Experimental results show that reduction can improve rate approach while maintaining accuracy within acceptable range. KNN classification attacks. will significantly speed up train testing periods identification attempts.

参考文章(31)
Noelia Sánchez-Maroño, Beatriz Pérez-Sánchez, Amparo Alonso-Betanzos, Juan A. Suárez-Romero, Félix M. Carballal-Fortes, Classification of computer intrusions using functional networks. A comparative study. the european symposium on artificial neural networks. pp. 579- 584 ,(2007)
R. Heady, G. Luger, A. Maccabe, M. Servilla, The architecture of a network level intrusion detection system Other Information: PBD: 15 Aug 1990. ,(1990) , 10.2172/425295
Gholam Reza Zargar, Peyman Kabiri, Selection of effective network parameters in attacks for intrusion detection international conference on data mining. pp. 643- 652 ,(2010) , 10.1007/978-3-642-14400-4_50
Srinivas Mukkamala, Andrew H Sung, Ajith Abraham, None, Modeling intrusion detection systems using linear genetic programming approach industrial and engineering applications of artificial intelligence and expert systems. pp. 633- 642 ,(2004) , 10.1007/B97304
Basabi Chakraborty, Feature Subset Selection by Neuro-rough Hybridization Lecture Notes in Computer Science. pp. 519- 526 ,(2000) , 10.1007/3-540-45554-X_64
Andrew H. Sung, Srinivas Mukkamala, The feature selection and intrusion detection problems Lecture Notes in Computer Science. pp. 468- 482 ,(2004) , 10.1007/978-3-540-30502-6_34
Wenke Lee, S.J. Stolfo, K.W. Mok, A data mining framework for building intrusion detection models ieee symposium on security and privacy. pp. 120- 132 ,(1999) , 10.1109/SECPRI.1999.766909
Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, Prabhakar Raghavan, Automatic subspace clustering of high dimensional data for data mining applications Proceedings of the 1998 ACM SIGMOD international conference on Management of data - SIGMOD '98. ,vol. 27, pp. 94- 105 ,(1998) , 10.1145/276304.276314
Wenke Lee, Salvatore J. Stolfo, A framework for constructing features and models for intrusion detection systems ACM Transactions on Information and System Security. ,vol. 3, pp. 227- 261 ,(2000) , 10.1145/382912.382914