Numerical analysis for hyperbolic heat conduction

作者: Chen Han-Taw , Lin Jae-Yuh

DOI: 10.1016/0017-9310(93)90108-I

关键词: Mathematical analysisCourant–Friedrichs–Lewy conditionLaplace transform applied to differential equationsLaplace transformNumerical analysisHyperbolic partial differential equationRelativistic heat conductionThermal conductionPhysicsDiscretization

摘要: Abstract A new numerical simulation of the hyperbolic heat conduction problem is investigated. The primary difficulty encountered in solution such a oscillations vicinity sharp discontinuities. In this work, it shown that hybrid technique based on Laplace transform and control volume methods can successfully be applied to suppress these oscillations. method used remove time-dependent terms, then transformed equations are discretized by scheme. Various comparative examples involving nonlinear with surface radiation composite region illustrated verify accuracy present method. Due application method, does not need consider effects Courant number results.

参考文章(15)
Kumar K. Tamma, Sudhir B. Railkar, Specially tailored transfinite-element formulations for hyperbolic heat conduction involving non-Fourier effects Numerical Heat Transfer Part B-fundamentals. ,vol. 15, pp. 211- 226 ,(1989) , 10.1080/10407798908944901
G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transforms Journal of Computational and Applied Mathematics. ,vol. 10, pp. 113- 132 ,(1984) , 10.1016/0377-0427(84)90075-X
Chih-Yang Wu, Integral equation solution for hyperbolic heat conduction with surface radiation International Communications in Heat and Mass Transfer. ,vol. 15, pp. 365- 374 ,(1988) , 10.1016/0735-1933(88)90037-1
D. E. Glass, M. N. Özişik, D. S. McRae, Brian Vick, ON THE NUMERICAL SOLUTION OF HYPERBOLIC HEAT CONDUCTION Numerical Heat Transfer Part B-fundamentals. ,vol. 8, pp. 497- 504 ,(1985) , 10.1080/01495728508961868
W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure Journal of Heat Transfer-transactions of The Asme. ,vol. 112, pp. 555- 560 ,(1990) , 10.1115/1.2910422
Kumar K. Tamma, Joseph F. D'Costa, TRANSIENT MODELING/ANALYSIS OF HYPERBOLIC HEAT CONDUCTION PROBLEMS EMPLOYING MIXED IMPLICIT-EXPLICIT α METHOD Numerical Heat Transfer Part B-fundamentals. ,vol. 19, pp. 49- 68 ,(1991) , 10.1080/10407799108944956
W. W. Yuen, S. C. Lee, Non-Fourier Heat Conduction in a Semi-infinite Solid Subjected to Oscillatory Surface Thermal Disturbances Journal of Heat Transfer-transactions of The Asme. ,vol. 111, pp. 178- 181 ,(1989) , 10.1115/1.3250641
K. J. Baumeister, T. D. Hamill, Hyperbolic Heat-Conduction Equation—A Solution for the Semi-Infinite Body Problem Journal of Heat Transfer. ,vol. 91, pp. 543- 548 ,(1969) , 10.1115/1.3580239
M.N. Özişik, Brian Vick, Propagation and reflection of thermal waves in a finite medium International Journal of Heat and Mass Transfer. ,vol. 27, pp. 1845- 1854 ,(1984) , 10.1016/0017-9310(84)90166-2