Similarity Solutions of Partial Differential Equations in Probability

作者: Mario Lefebvre

DOI: 10.1155/2011/689427

关键词: Separation of variablesConcentricNumerical partial differential equationsSimilarity (network science)MathematicsPartial differential equationBoundary (topology)Separable partial differential equationMathematical analysisGeneralized Fourier series

摘要: Two-dimensional diffusion processes are considered between concentric circles and in angular sectors. The aim of the paper is to compute probability that process will hit a given part boundary stopping region first. appropriate partial differential equations solved explicitly by using method similarity solutions separation variables. Some expressed as generalized Fourier series.

参考文章(9)
Samuel Karlin, Howard E Taylor, A second course in stochastic processes ,(1981)
D. B. Owen, Handbook of Mathematical Functions with Formulas Technometrics. ,vol. 7, pp. 78- 79 ,(1965) , 10.1080/00401706.1965.10490234
J. L. Doob, A probability approach to the heat equation Transactions of the American Mathematical Society. ,vol. 80, pp. 216- 280 ,(1955) , 10.1090/S0002-9947-1955-0079376-0
Frank Spitzer, Some theorems concerning 2-dimensional Brownian motion Transactions of the American Mathematical Society. ,vol. 87, pp. 187- 197 ,(1958) , 10.1007/978-1-4612-0459-6_2
J. G. Wendel, Hitting Spheres with Brownian Motion Annals of Probability. ,vol. 8, pp. 164- 169 ,(1980) , 10.1214/AOP/1176994833
CHUANCUN YIN, RONG WU, HITTING TIME AND PLACE TO A SPHERE OR SPHERICAL SHELL FOR BROWNIAN MOTION Chinese Annals of Mathematics. ,vol. 20, pp. 205- 214 ,(1999) , 10.1142/S0252959999000230
Mario Lefebvre, Jean-Luc Guilbault, Au sujet de l'endroit de premier passage pour des processus de diffusion bidimensionnels Annales des sciences mathématiques du Québec. ,vol. 25, pp. 23- 37 ,(2001)
David R. Cox, Hilton D. Miller, The theory of stochastic processes ,(1965)