Adaptive framework for robust high-resolution image reconstruction in multiplexed computational imaging architectures

作者: Noha A. El-Yamany , Panos E. Papamichalis , Marc P. Christensen

DOI: 10.1364/AO.47.00B117

关键词: Artificial intelligenceMedical imagingSimilarity measureComputer visionAnisotropic diffusionOpticsImage processingComputational photographyComputer scienceReconstruction procedureIterative reconstructionAdaptive algorithmRobustness (computer science)Image sensor

摘要: In multiplexed computational imaging schemes, high-resolution images are reconstructed by fusing the information in multiple low-resolution detected a two-dimensional array of image sensors. The reconstruction procedure assumes mathematical model for process that could have generated observations from an unknown image. practical settings, parameters known only approximately and typically estimated before takes place. Violations to assumed model, such as inaccurate knowledge field view imagers, erroneous estimation parameters, and/or accidental scene or environmental changes can be detrimental quality, even if they small number. We present adaptive algorithm robust architectures. Using M-estimators incorporating similarity measure, proposed scheme adopts strategy effectively deals with violations model. Comparisons nonadaptive techniques demonstrate superior performance terms quality robustness.

参考文章(20)
Mejdi Trimeche, Radu Ciprian Bilcu, Jukka Yrjänäinen, Adaptive outlier rejection in image super-resolution EURASIP Journal on Advances in Signal Processing. ,vol. 2006, pp. 228- 228 ,(2006) , 10.1155/ASP/2006/38052
Hanoch Ur, Daniel Gross, Improved resolution from subpixel shifted pictures CVGIP: Graphical Models and Image Processing. ,vol. 54, pp. 181- 186 ,(1992) , 10.1016/1049-9652(92)90065-6
M.J. Black, G. Sapiro, D.H. Marimont, D. Heeger, Robust anisotropic diffusion IEEE Transactions on Image Processing. ,vol. 7, pp. 421- 432 ,(1998) , 10.1109/83.661192
Peter Meer, Doron Mintz, Azriel Rosenfeld, Dong Yoon Kim, Robust regression methods for computer vision: a review International Journal of Computer Vision. ,vol. 6, pp. 59- 70 ,(1991) , 10.1007/BF00127126
Zoran A. Ivanovski, Ljupcho Panovski, Lina J. Karam, Robust super-resolution based on pixel-level selectivity visual communications and image processing. ,vol. 6077, pp. 607707- ,(2006) , 10.1117/12.642722
Hseuh-Ban Lan, Sally L. Wood, Marc P. Christensen, Dinesh Rajan, Benefits of optical system diversity for multiplexed image reconstruction Applied Optics. ,vol. 45, pp. 2859- 2870 ,(2006) , 10.1364/AO.45.002859
Sung Cheol Park, Min Kyu Park, Moon Gi Kang, Super-resolution image reconstruction: a technical overview IEEE Signal Processing Magazine. ,vol. 20, pp. 21- 36 ,(2003) , 10.1109/MSP.2003.1203207
V Patanavijit, S Jitapunkul, A Lorentzian stochastic estimation for a robust iterative multiframe super-resolution reconstruction with Lorentzian-Tikhonov regularization EURASIP Journal on Advances in Signal Processing. ,vol. 2007, pp. 21- 21 ,(2007) , 10.1155/2007/34821
Joseph Mait, Ravi Athale, Joseph van der Gracht, Evolutionary paths in imaging and recent trends. Optics Express. ,vol. 11, pp. 2093- 2101 ,(2003) , 10.1364/OE.11.002093
Michal Irani, Shmuel Peleg, Improving resolution by image registration CVGIP: Graphical Models and Image Processing. ,vol. 53, pp. 231- 239 ,(1991) , 10.1016/1049-9652(91)90045-L