Estimation of thermal conductivity, heat transfer coefficient, and heat flux using a three dimensional inverse analysis

作者: Farzad Mohebbi , Mathieu Sellier

DOI: 10.1016/J.IJTHERMALSCI.2015.09.002

关键词: Finite difference methodApplied mathematicsLaplace's equationConjugate gradient methodHeat fluxMathematicsHeat transfer coefficientInverse problemThermal conductivityThermal conduction

摘要: Abstract This paper presents a numerical inverse analysis to estimate the thermal conductivity, heat transfer coefficient, and flux in three dimensional irregular bodies steady state conduction problems. In this study, 3-D elliptic grid generation technique is used mesh body. The Laplace equation solved computational domain compute temperature at any point meshed A novel very efficient sensitivity scheme introduced coefficients gradient based optimization method. Using scheme, one can solve problem without need solution of adjoint equation. main advantages are its simplicity, accuracy, independency number direct from unknown variables which makes presented here accurate efficient. conjugate method (CGM) minimize objective function difference between computed on part boundary measured temperature. obtained results confirm that proposed algorithm accurate, robust,

参考文章(28)
E. Polak, G. Ribiere, Note sur la convergence de méthodes de directions conjuguées ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique. ,vol. 3, pp. 35- 43 ,(1969) , 10.1051/M2AN/196903R100351
C. Wayne Mastin, Joe F. Thompson, Z. U.A. Warsi, Numerical Grid Generation: Foundations and Applications ,(1985)
T. Jurkowski, Y. Jarny, D. Delaunay, Estimation of thermal conductivity of thermoplastics under moulding conditions: an apparatus and an inverse algorithm International Journal of Heat and Mass Transfer. ,vol. 40, pp. 4169- 4181 ,(1997) , 10.1016/S0017-9310(97)00027-6
Eduardo Divo, Alain J. Kassab, Jay S. Kapat, Ming-King Chyu, Retrieval of multidimensional heat transfer coefficient distributions using an inverse BEM-based regularized algorithm: numerical and experimental results Engineering Analysis With Boundary Elements. ,vol. 29, pp. 150- 160 ,(2005) , 10.1016/J.ENGANABOUND.2004.08.006
E. A. Artyukhin, Reconstruction of the thermal conductivity coefficient from the solution of the nonlinear inverse problem Journal of Engineering Physics. ,vol. 41, pp. 1054- 1058 ,(1981) , 10.1007/BF00824761
Helcio R. B. Orlande, M. Necati Özisik, Inverse Heat Transfer: Fundamentals and Applications ,(2000)
M. Mierzwiczak, J.A. Kołodziej, The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem International Journal of Heat and Mass Transfer. ,vol. 54, pp. 790- 796 ,(2011) , 10.1016/J.IJHEATMASSTRANSFER.2010.10.024
L. B. Dantas, H. R. B. Orlande, A function estimation approach for determining temperature-dependent thermophysical properties Inverse Problems in Engineering. ,vol. 3, pp. 261- 279 ,(1996) , 10.1080/174159796088027627
James V. Beck, Surface heat flux determination using an integral method Nuclear Engineering and Design. ,vol. 7, pp. 170- 178 ,(1968) , 10.1016/0029-5493(68)90058-7